

УДК 577.29

НОВЫЙ КОМПЛЕКС РИБОЗИМА С ГЛЮКОЗО-6-ФОСФАТИЗОМЕРАЗНОЙ АКТИВНОСТЬЮ И ФЕРМЕНТА ГЕКСОКИНАЗЫ В ПЕКАРСКИХ ДРОЖЖАХ Saccharomyces cerevisiae

© 2023 г. О. Н. Соловьева*, #

*Московский государственный университет им. М.В. Ломоносова, НИИ физико-химической биологии им. А.Н. Белозерского, Россия, 119234 Москва, Ленинские горы, 1с40 Поступила в редакцию 14.11.2022 г. После доработки 19.11.2022 г. Принята к публикации 20.11.2022 г.

Показано существование неизвестного ранее рибозима с каталитической активностью глюкозо-6-фосфатизомеразы. Рибозим катализирует взаимопревращение глюкозо-6-фосфата и фруктозо-6-фосфата. Рибозим обнаружен в пекарских дрожжах *Saccharomyces cerevisiae* и выделен в комплексе с ферментом гексокиназой. Комплекс легко выделялся на иммуноаффинной колонке с антителами к гексокиназе. Рибозим состоит из 41–42 нуклеотидов и имеет молекулярную массу 14.15–14.5 кДа. $K_{\rm m}$ и $V_{\rm max}$ составляют, соответственно, 0.14 ± 0.02 мМ и 14.0 ± 1.3 ед./мг для глюкозо-6-фосфата и 0.20 ± 0.03 мМ и 15.4 ± 1.4 ед./мг для фруктозо-6-фосфата. Эти кинетические характеристики примерно одинаковы для рибозима в составе комплекса и для свободного рибозима. Гексокиназа в составе комплекса сохраняет свою каталитическую активность.

Ключевые слова: рибозимы, каталитическая РНК, рибонуклеопротеин, глюкозофосфатизомераза, Saccharomyces cerevisiae

DOI: 10.31857/S013234232305007X, EDN: BYLHBD

введение

Впервые сообщения о рибозимах были опубликованы в 1981–1983 г. [1–3]. Рибозимы катализируют различные реакции, но в основном ограничиваются реакциями переноса фосфорила [4]. Рибозимы в основном участвуют в синтезе и расщеплении РНК [5–9] и белков [10]. Рибосомы функционируют как рибозимы [11–13]. РНКаза Р работает в белковом комплексе с рибозимом [14, 15]. Рибозим Glms участвуют в биосинтезе аминокислот [16–18]. Существуют рибозимы, катализирующие реакции переноса аминокислот [19]. Эксперименты по селекции *in vitro* выявили рибозимы с активностью пероксидазы [20], синтазы мочевины [21], пируватдекарбоксилазы [22], алкогольдегидрогеназы [23, 24] и альдолазы [25, 26].

В то же время известно множество комплексов РНК с белками [27–29]. Вполне вероятно, что не-которые РНК могут быть рибозимами. В послед-

ние годы для выделения РНК-связывающих белков широко используются методы экстракции либо на иммобилизованных РНК-зондах для захвата белков, либо на иммобилизованных белках для захвата РНК [30, 31]. В 2020 г. мною показано существование природного рибозима с триозофосфатизомеразной активностью [32]. Рибозим был нековалентно связан с транскетолазой пекарских дрожжей и выделен на иммуноаффинной колонке с антителами к транскетолазе. Этот рибозим не только проявляет каталитическую активность, но и препятствует проявлению каталитической активности транскетолазы, переключая таким образом катализ с цикла Кребса на гликолиз и выполняя, соответственно, две функции – работу гликолитического фермента и блокирование фермента пентозофосфатного пути. После отделения рибозима от белка активность рибозима сохраняется, а активность транскетолазы восстанавливается. Интересно, что формирование комплекса носит сезонный характер. Наибольшее количество комплекса выделялось из декабрьских дрожжей.

В настоящей работе проведено исследование рибозима, связанного с гексокиназой (ГК) пекарских дрожжей *Saccharomyces cerevisiae*. ГК – один

Сокращения: АцN – ацетонитрил; ГК – гексокиназа (АТФ:D-гексоза-6-фосфотрансфераза, КФ 2.7.1.1); Г6Ф – глюкозо-6-фосфат; Г6ФИ – глюкозо-6-фосфатизомераза; ГФДГ – глюкозо-6-фосфатдегидрогеназа; Ф6Ф – фруктозо-6-фосфат.

[#] Автор для связи: (тел.: +7 (495) 939-14-56; эл. почта: soloveva_o@list.ru).

из ~300 белков-совместителей [33–35]. Тот факт, что ГК может связываться с РНК, был показан ранее [36].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Комплекс ГК-РНК (вместе с возможной свободной ГК) выделяли из пекарских дрожжей S. cerevisiae на иммобилизованных антителах к ГК (Sigma, США). Соответственно, с антителами могла связываться только ГК. Возможные адсорбированные белки удаляли путем тщательной промывки колонки до тех пор, пока спектр поглощения не стал равным нулю. Для получения комплекса ГК-РНК без свободной ГК продукт пропускали через анионообменную колонку IRA-400. Комплекс ГК-РНК элюировали 10 мМ калий-фосфатным буфером, рН 7.6. Свободная ГК оставалась связанной с ионообменником даже при пропускании 500 мМ буфера через колонку (рис. 1). РНК отделяли от комплекса ГК-РНК с помощью ацетонитрила (АцN). Следовательно, РНК связана с ГК нековалентно. Наибольшее количество комплекса выделялось из декабрьских дрожжей. В летних дрожжах комплекс практически отсутствовал.

На рис. 2 представлены спектры поглощения комплекса ГК–РНК после элюции с колонки IRA-400 (кривая 1); РНК, полученной из комплекса ГК–РНК осаждением белка с использованием АцN (кривая 2); их дифференциальный спектр, представляющий собой свободную ГК (кривая 3). Спектр РНК после ее осаждения АцN был таким же, как и после удаления ГК кипячением (данные не приведены). Концентрацию белка в комплексе ГК–РНК определяли по методу Брэдфорд [37]. После осаждения этанолом белок в составе РНК не обнаружен.

После отделения РНК от комплекса ГК–РНК с помощью АцN соотношение поглощения при длинах волн 260/280 нм и 260/230 нм увеличилось, а после осаждения полученной РНК этанолом оба соотношения приблизились к значению 2.0, что соответствует чистой РНК (табл. 1) [38].

По поглощению при 260 нм концентрация нуклеотидов в РНК после АцN составила 17.08 мкг/мл, что соответствует 49.5 мкМ (см. подраздел "Концентрация свободных ГК и ГК в комплексе с РНК" в "Эксперим. части"). По измерению концентрации рибозо-5-фосфата с орцином концентрация нуклеотидов составила 50 \pm 2 мкМ. При этом концентрация ГК была равна 0.13 мг/мл или 1.204 мкМ (молекулярная масса ГК 108 кДа [39]). Соответственно, с одной молекулой ГК связан 41 нуклеотид, и расчетная молекулярная масса РНК составляет ~14.15 кДа (в случае равного количества пуриновых и пиримидиновых оснований). При условии, что одна молекула РНК свя-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 49 № 5 2023

Рис. 1. Элюирование комплекса ГК–РНК на колонке IRA-400. На колонку наносили 2 мл ГК (смесь свободного фермента и его комплекса с РНК); *1* – через колонку пропускали 10 мМ калий-фосфатный буфер (рН 7.6), *2* – через колонку пропускали 500 мМ калий-фосфатный буфер (рН 7.6).

Рис. 2. Спектры поглощения: 1 -комплекс ГК-РНК после элюции на колонке IRA-400, 2 - РНК после осаждения белка с использованием АцN, 3 - ГК из комплекса ГК-РНК (спектр получен вычитанием 1-2), 4 - РНК после осаждения этанолом (разведено до исходного объема). Спектры регистрировали в 50 мМ калий-фосфатном буфере, рН 7.6.

зывается с одной молекулой димерной ГК, молекулярная масса РНК составит 14.15 кДа, что согласуется с определением ее молекулярной массы на сефадексе G-100 в 6 М мочевине (14.5 кДа, что соответствует 42 нуклеотидам, рис. 3). До сих пор неясно, сколько молекул РНК может быть связано с димерной молекулой ГК – одна или две.

РНК в комплексе с ГК и в свободной форме катализирует взаимопревращение глюкозо-6-фосфа-

N⁰	Фермент/рибозим	Длина волны, нм							Концентрация,
		230	260	280	290	260/280	260/230	260/290	мг/мл белка
1	Комплекс ГК-РНК	0.771	0.504	0.355	0.159	1.42	0.65	3.1	0.132*
2	РНК после АцN	0.354	0.427	0.232	0.089	1.84	1.21	4.8	0*
3	ГК	0.417	0.077	0.123	0.070	0.63	0.19	1.1	0.130**
4	РНК после этанола	0.388	0.752	0.341	0.134	2.20	1.94	5.6	0*

Таблица 1. Поглощение комплекса ГК-РНК, РНК и ГК (данные из рис. 2)

Примечание: концентрацию белка определяли * по Брэдфорд [37] и ** спектрофотометрически, используя $A_{1\,cM}^{1\%}$ 9.47 при 280 нм [46]. Все концентрации даны в соответствии с исходной концентрацией комплекса ГК–РНК.

Таблица 2. Кинетические характеристики для РНК по сравнению с Г6ФИ

Субстрат	N⁰	Фермент/рибозим	<i>K</i> _m , мМ	<i>V</i> _{max} , ед./мг*
Г6Ф	1	ГК–РНК	0.128 ± 0.002	14.02 ± 0.09
	2	РНК	0.132 ± 0.002	13.60 ± 0.09
	3	Г6ФИ (фермент) из дрожжей	0.3 [47] 0.87 ± 0.22 [48]	_
Φ6Φ	4	ГК–РНК	0.200 ± 0.005	15.4 ± 0.3
	5	РНК	0.198 ± 0.005	14.9 ± 0.3
	6	Г6ФИ (фермент) из дрожжей	0.15 [47]	—
Фруктоза	7	ГК–РНК	6.03 ± 0.10	11.03 ± 0.06
	8	ГК (фермент) из дрожжей (Sigma)	0.104 ± 0.002	0.790 ± 0.005

* V_{max} приведена в ед./мг на мг РНК для комплекса и рибозима и на мг белка для фермента.

та (Г6Ф) в фруктозо-6-фосфат (Ф6Ф). Определены кинетические характеристики рибозима с Ф6Ф и Г6Ф (табл. 2). На рис. 4 показан фитинг по уравнению Михаэлиса для всех измеренных кривых (представлены результаты одного из однотипных опытов). К_т и V_{тах} практически одинаковы для свободного рибозима и для рибозима в комплексе с ГК. При использовании фруктозы происходит цепочка реакций: ГК превращает фруктозу в Ф6Ф, затем Ф6Ф используется для катализа рибозимом. И_{тах} для комплекса ГК-РНК различается незначительно при использовании рибозима непосредственно с его нативным субстратом (Ф6Ф, табл. 2, № 4 и 5) и такого же субстрата, продуцируемого ГК в комплексе с РНК (табл. 2, № 7). Это означает, что фермент и рибозим работают в тандеме. 30-Кратное увеличение $K_{\rm m}$ для фруктозы по сравнению с Ф6Ф при катализе комплекса ГК-РНК (табл. 2, № 4 и 7) может означать, что не все молекулы Ф6Ф, образующиеся в ходе реакции ГК, используются рибозимом, это подтверждает данные определения молекулярной массы рибозима (только один из двух активных центров ГК имеет связанную РНК). Второй активный центр может иметь более низкое сродство к рибозиму или вообще не связываться с ним. В таком случае Ф6Ф, образующийся во втором, свободном от рибозима, активном центре ГК, будет выделяться в среду, что снижает реальную концентрацию Ф6Ф для рибозима.

Схема гликолиза с тандемной реакцией ГК и глюкозо-6-фосфатизомеразы (Г6ФИ)-рибозима при использовании глюкозы представлена на рис. 5. Красными кружками на схеме обведены ферменты, функцию которых могут осуществлять рибозимы – охарактеризованный в настоя-

Рис. 3. Определение молекулярной массы РНК на колонке с сефадексом G-100 в присутствии 6 М мочевины. Маркеры молекулярной массы: альбумин человека (66.44 кДа), пепсин (34.5 кДа) и лизоцим (14.5 кДа).

Рис. 4. Фитинг экспериментальных кривых по уравнению Михаэлиса для реакций, представленных в табл. 2: Г6Ф с комплексом ГК–РНК (*a*), Г6Ф с РНК (*б*), Ф6Ф с комплексом ГК–РНК (*b*), Ф6Ф с РНК (*c*), фруктоза с комплексом ГК–РНК (*b*), фруктоза с ГК (*e*).

щей работе рибозим Г6ФИ и обнаруженный ранее рибозим триозофосфатизомераза [32].

Рибозим триозофосфатизомераза не только проявлял каталитическую активность, но и вы-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 49 № 5 2023

ключал работу транскетолазы — ключевого фермента пентозофосфатного пути. При этом оба рибозима замещают ферменты гликолиза (рис. 5). Эти данные указывают на возможность более ши-

Рис. 5. Схема гликолиза. Рибозимы обведены красным.

рокого участия рибозимов в катализе в настоящее время. Кроме того, известно много рибонуклеопротеидов, в которых функция РНК не изучена. Показано, что с РНК связаны такие гликолитические ферменты, как фосфофруктокиназа [40], глицеральдегидфосфатдегидроненаза [41, 42] и пируваткиназа [43, 44]. Другие гликолитические ферменты также могут быть рибозимами. Известно, что энолаза ингибируется РНК-лигандами [45]. В настоящее время РНК-связывающая активность показана для многих метаболических ферментов [45].

Оба исследованных нами рибозима в наибольшей степени образуют комплекс со своим ферментом в декабре, тогда как в остальное время количество комплексов составляет не более 1%. Причина этой сезонности переключения катализа на гликолиз в дрожжевых клетках еще предстоит выяснить. Это тем более интересно, что комплекс транскетолаза—рибозим был обнаружен в асците мышей (неопубликованные данные), что может иметь медицинское значение.

Предстоит еще выяснить, где именно РНК связывается с белком, а также определить последовательность нуклеотидов РНК, выяснить причину сезонности образования комплекса фермента с рибозимом и определить, в каких еще организмах и при каких условиях встречается рибозим.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Глицилглицин, NADP, NADH, MgCl₂, глюкозофосфатдегидрогеназа (ГФДГ), фосфофруктокиназа, АТФ, α-глицерофосфатдегидрогеназа-триозофосфатизомераза, альдолаза из мышц кролика, гексокиназа-2 (ГК-2, КФ 2.7.1.1) из Saccharomyces cerevisiae, сефароза 4B, активированная бромцианом, сефадекс G-50, сефадекс G-100, фосфат калия, ацетонитрил (АцN) (Sigma, США); фруктоза, глюкоза, IRA-400, альбумин человека, пепсин и лизоцим (Reanal, Beнгрия); Saccharomyces cerevisiae (Lesaffre, Франция). Остальные реактивы имели квалификацию о.с.ч.

Гексокиназу (смесь комплекса ГК–РНК и свободного фермента) выделяли из пекарских дрожжей *Saccharomyces cerevisiae* на колонке с иммобилизованными антителами к ГК. Получение дрожжевого экстракта, иммунизацию кролика дрожжевой ГК-2 (Sigma, США), забор крови, выделение и иммобилизацию антител проводили так же, как описано ранее [49]. После пропускания дрожжевого экстракта через иммуноаффинную колонку

ее тщательно промывали до нулевого поглощения в промывных водах. В процессе элюирования ГК с колонки pH поддерживали на уровне 7.6 добавлением к элюату 4 М HCl. Элюированный белок разделяли на аликвоты и хранили в замороженном виде при -20°С не более трех месяцев.

ГК, выделенную на иммунноаффинной колонке (смесь свободной ГК и комплекса ГК– РНК), пропускали через колонку с сефадексом G-50 в 10 мМ калий-фосфатном буфере, pH 7.6. Затем через колонку IRA-400 (2.4 мл), предварительно промытую 100 мл 0.1 М КОН и водой до нейтрального pH, пропускали 2 мл ГК + ГК– РНК и элюировали тем же буфером. Свободный фермент адсорбировался на колонке. Для анализа собирали объединенные фракции по 2 мл.

Свободную РНК из комплекса ГК–РНК выделяли с помощью АцN, который добавляли к комплексу ГК–РНК в соотношении 3 : 1, перемешивали и замораживали в течение 1–2 ч при –12°С. Верхний слой АцN не содержал РНК, поэтому собирали только нижний водный слой после удаления денатурированного белка центрифугированием. Полученную таким образом РНК осаждали 96%-ным этанолом (5 : 1) и растворяли в 10 мМ калий-фосфатном буфере, рН 7.6. Определение белка по методу Брэдфорд [37] показало отсутствие белка.

Концентрацию свободных ГК и ГК в комплексе с РНК определяли по методу Брэдфорд [37], используя свободную ГК для калибровки. Концентрацию свободной ГК также измеряли спектрофотометрически, используя $A_{1 cm}^{1\%}$ 9.47 при 280 нм [46]. Количество рибозы в РНК измеряли в реакции с

количество риоозы в РНК измеряли в реакции с орцином [50]. Количество нуклеотидов в свободной РНК рассчитывали согласно методике Barbas et al. [51], в которой оптическая плотность при 260 нм равна 1.0 для раствора РНК с концентрацией 40 мкг/мл при длине оптического пути 1 см. Молярную концентрацию нуклеотидов рассчитывали, взяв среднюю массу нуклеотидов 345 Да.

Молекулярную массу РНК определяли методом гель-хроматографии на колонке Sephadex G-100 в 6 М мочевине. На колонку 15 × 1 мл наносили 1 мл РНК. В качестве маркеров были взяты альбумин человека (66.44 кДа), пепсин (34.5 кДа) и лизоцим (14.5 кДа). Все соединения перед нанесением на колонку выдерживали в течение 2 ч в мочевине.

Каталитическую активность ГК измеряли с фруктозой спектрофотометрически при 340 нм. Образующийся при этом Ф6Ф определяли по его превращению в реакции с фосфофруктокиназой [52]. Реакционная смесь состояла из 50 мМ глицилглицина, 1 мМ фруктозы, 2 мМ АТФ, 10 мМ MgCl₂, 0.3 мМ NADH, 1 ед./мл фосфофруктокиназы, 1 ед./мл альдолазы и 1 ед./мл триозофосфатизо-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 49 № 5 2023

меразы и глицерофосфатдегидрогеназы (pH 7.6), при этом на 1 моль образовавшегося фруктозо-1,6-фосфата окисляется 2 моль NADH.

Глюкозофосфатизомеразную активность рибозима измеряли спектрофотометрически при 340 нм двумя способами: 1) после образования $\Phi 6\Phi$ из Г6 Φ ; реакционная смесь состояла из 2 мМ АТ Φ , 10 мМ MgCl₂, 0.3 мМ NADH и по 1 ед./мл фосфофруктокиназы, альдолазы, триозофосфатизомеразы и глицерофосфатдегидрогеназы (pH 7.6) [53]; 2) после образования Г6 Φ из $\Phi 6\Phi$ с Г Φ ДГ, MgCl₂, NADP при тех же условиях, как при измерении активности ГК [52], перед добавлением фермента или рибозима инкубационную смесь выдерживали до исчезновения фоновой активности. K_m для субстратов измеряли в диапазоне концентраций $\Phi 6\Phi$ и Г6 Φ 0.012–0.3 мМ.

Экспериментальные данные анализировали с использованием уравнения Михаэлиса:

$$v = V[S]/([S] + K_{\rm m}),$$

где v — скорость реакции, V — максимальная скорость реакции, S — концентрация субстрата, K_m — константа Михаэлиса. Значения K_m определяли путем фитинга экспериментальной кривой зависимости скорости реакции от концентрации субстрата. Каждая точка на экспериментальной кривой представляет начальную скорость реакции при добавлении одной концентрации субстрата.

ЗАКЛЮЧЕНИЕ

Принято считать, что мир РНК существовал до того, как катализ перешел к белковым молекулам [54, 55]. Однако в пекарских дрожжах S. cerevisiae по крайней мере два рибозима функционируют наряду с ферментами. Это обнаруженный ранее триозофосфатный рибозим [32] и охарактеризованный в настояшей статье глюкозофосфатизомеразный рибозим. Оба рибозима обнаружены впервые. Г6ФИ-рибозим образует нековалентный комплекс с ферментом гексокиназой. поэтому его легко получить в чистом виле на иммуноаффинной колонке с антителами к гексокиназе. Выделяющаяся при этом свободная ГК затем удаляется сорбцией на анионообменнике IRA-400. В спектрах поглощения РНК после осаждения этанолом соотношение поглощения при длинах волн 260/280 нм равнялось 2.2, а при 260/230 нм — 1.94, что соответствует чистой PHK. При этом измерение содержания белка в препарате свободной РНК показало его полное отсутствие.

Молекулярная масса Г6ФИ-рибозима составила ~14.15–14.5 кДа, что соответствует 41–42 нуклеотидам. Определение кинетических параметров свободного рибозима и рибозима в комплексе с белком показало, что они одинаковы как для Г6Ф, так и для Ф6Ф. Сродство к Г6Ф и Ф6Ф у рибозима того же порядка, что и для белкового фермента (табл. 2).

При использовании фруктозы осуществляется цепочка реакций: ГК превращает фруктозу в Ф6Ф, а рибозим изомеризует Ф6Ф в Г6Ф. $V_{\rm max}$ такой тандемной реакции, определяемая активностью рибозима, практически не изменяется, а увеличение $K_{\rm m}$ может быть обусловлено тем, что часть фруктозы используется вторым, свободным активным центром ГК, выделяясь при этом в среду и уменьшая таким образом фактическую концентрацию фруктозы, используемой первым, связанным с рибозимом, активным центром.

Метод выделения рибозимов из их комплекса с ферментами на иммуноаффинной колонке быстр, точен и удобен и может быть использован для выделения других рибозимов.

БЛАГОДАРНОСТИ

Статья посвящается памяти моего дорогого учителя Германа Александровича Кочетова.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит описания исследований с участием людей или использованием животных в качестве объектов исследования.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Cech T.R., Zaug A.J., Grabowski P.I. // Cell. 1981. V. 27. P. 487–496.
- https://doi.org/10.1016/0092-8674(81)90390-1
- Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. // Cell. 1982. V. 31. P. 147–157. https://doi.org/10.1016/0092-8674(82)90414-7
- Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. // Cell. 1983. V. 35. P. 849–857. https://doi.org/10.1016/0092-8674(83)90117-4
- Wilson T.J., Lilley D.M.J. // Wiley Interdiscip. Rev. RNA. 2021. V. 12. P. e1651. https://doi.org/10.1002/wrna.165
- Lilley D.M. // Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2011. V. 366. P. 2910–2917.
- https://doi.org/10.1098/rstb.2011.0132
 6. *Lilley D.M.* // Biochem. Soc. Trans. 2011. V. 39. P. 641–646.
- https://doi.org/10.1042/BST0390641
- Wilson T.J., Lilley D.M. // RNA. V. 21. P. 534–537. https://doi.org/10.1261/rna.049874.115
- Müller S., Appel B., Balke D., Hieronymus R., Nübel C. // F1000Res. 2016. V. 5. P. 1511. https://doi.org/10.12688/f1000research.8601.1
- Kuznetsova S.A., Petrukov K.S., Pletnev F.I., Sergiev P.V., Dontsova O.A. // Biochemistry (Moscow). 2019. V. 84.

P. 851-869.

https://doi.org/10.1134/S0006297919080029

- Suga H., Cowan J.A., Szostak J.W. // Biochemistry. 1998. V. 37. P. 10118–10125. https://doi.org/10.1021/bi980432a
- 11. *DeRose V.J.* // Chem. Biol. 2002. V. 9. P. 961–969. https://doi.org/10.1016/S1074-5521(02)00217-X
- Kingery D.A., Pfund E., Voorhees R.M., Okuda K., Wohlgemuth I., Kitchen D.E., Rodnina M.V., Strobel S.A. // Chem. Biol. 2008. V. 15. P. 493–500. https://doi.org/10.1016/j.chembiol.2008.04.005
- Wohlgemuth I., Brenner S., Beringer M., Rodnina M.V. // J. Biol. Chem. 2008. V. 283. P. 32229–32235. https://doi.org/10.1074/jbc.M805316200
- Kikovska E., Svard S.G., Kirsebom L.A. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 2062–2067. https://doi.org/10.1073/pnas.0607326104
- Marvin M.C., Engelke D.R. // J. Cell. Biochem. 2009. V. 108. P. 1244–1251. https://doi.org/10.1002/jcb.22367
- McCarthy T.J., Plog M.A., Floy S.A., Jansen J.A., Juliane K., Soukup J.K., Soukup G.A. // Chem. Biol. 2005. V. 12. P. 1221–1226. https://doi.org/10.1016/j.chembiol.2005.09.006
- Brooks K.M., Hampel K.J. // Biochemistry. 2011. V. 50. P. 2424–2433. https://doi.org/10.1021/bi101842u
- Bingaman J.L., Zhang S., Stevens D.R., Yennawar N.H., Hammes-Schiffer S., Bevilacqua P.C. // Chem. Biol. 2017. V. 13. P. 439–445. https://doi.org/10.1038/nchembio.2300
- Lohse P.A., Szostak J.W. // Nature. 1996. V. 381. P. 442–444. https://doi.org/10.1038/381442a0
- Travascio P., Bennet A.J., Wang D.Y., Sen D. // Chem. Biol. 1999. V. 6. P. 779–787. https://doi.org/10.1016/S1074-5521(99)80125-2
- 21. Nieuwlandt D., West M., Cheng X., Kirshenheuter G., Eaton B.E. // ChemBioChem. 2003. V. 4. P. 651–654. https://doi.org/10.1002/cbic.200300610
- 22. Cernak P., Sen D. // Nat. Chem. 2013. V. 5. P. 971–977. https://doi.org/10.1038/nchem.1777
- Tsukiji S., Pattnaik S.B., Suga H. // Nat. Struct. Biol. 2003. V. 10. P. 713–717. https://doi.org/10.1038/nsb964
- 24. Corley M., Burns M.C., Yeo G.W. // Mol. Cell. 2020. V. 78. P. 9–29. https://doi.org/10.1016/j.molcel.2020.03.011
- 25. Smith J.M., Sandow J.J., Webb A.I. // Biochem. Soc. Trans. 2021. V. 49. P. 393–403. https://doi.org/10.1042/BST20200688
- 26. *Ramanathan M., Porter D.F., Khavari P.A.* // Nat. Methods. 2019. V. 16. P. 225–234. https://doi.org/10.1038/s41592-019-0330-1
- Tsukiji S., Pattnaik S.B., Suga H. // J. Am. Chem. Soc. 2004. V. 126. P. 5044–5045. https://doi.org/10.1021/ja0495213
- Fusz S., Eisenführ A., Srivatsan S.G., Heckel A., Famulok M. // Chem. Biol. 2005. V. 12. P. 941–950. https://doi.org/10.1021/ja0495213
- 29. Fusz S., Srivatsan S.G., Ackermann D., Famulok M. // J. Org. Chem. 2008. V. 73. P. 5069–5077. https://doi.org/10.1021/jo800639p

- Curtis N.J., Jeffery C.J. // Biochem. Soc. Trans. 2021. V. 49. P. 1099–1108. https://doi.org/10.1042/BST20200664
- Gemmill D., D'souza S., Meier-Stephenson V., Patel T.R. // Biochem. Cell Biol. 2020. V. 98. P. 31–41. https://doi.org/10.1139/bcb-2019-0041
- 32. Solovjeva O.N. // Open J. Anal. Bioanal. Chem. 2020. V. 4. P. 020–028. https://doi.org/10.17352/ojabc.000020
- Gancedo C., Flores C.L. // Microbiol. Mol. Biol. Rev. 2008. V. 72. P. 197–210. https://doi.org/10.1128/MMBR.00036-07
- 34. Ahuatzi D., Riera A., Pela Ez.R., Herrero P., Moreno F. // J. Biol. Chem. 2007. V. 282. P. 4485–4493. https://doi.org/10.1074/jbc.M606854200
- Rodríguez-Saavedra C., Morgado-Martínez L.E., Burgos-Palacios A., King-Díaz B., López-Coria M., Sánchez-Nieto S. // Front. Mol. Biosci. 2021. V. 8. P. 701975. https://doi.org/10.3389/fmolb.2021.701975
- Castello A., Hentze M.W., Preiss T. // Trends Endocrinol. Metab. 2015. V. 26. P. 746–757. https://doi.org/10.1016/j.tem.2015.09.012
- 37. *Bradford M.M.* // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Wilfinger W.W., Mackey K., Chomczynski P. // Biotechniques. 1997. V. 22. P. 474–481. https://doi.org/10.2144/97223st01
- 39. Jacob L., Beecken V., Bartunik L.J., Rose M., Bartunik H.D. // J. Chromatogr. 1991. V. 587. P. 85–92. https://doi.org/10.1016/0021-9673(91)85201-p
- 40. *Rabinovitz M.* // FEBS Lett. 1992. V. 302. P. 113–116. https://doi.org/10.1016/0014-5793(92)80418-G
- 41. White M.R., Garcin E.D. // Wiley Interdiscip. Rev. RNA. 2016. V. 7. P. 53–70. https://doi.org/10.1002/wrna.1315
- 42. Arutyunova E.I., Danshina P.V., Domnina L.V., Pleten A.P., Muronetz V.I. // Biochem. Biophys. Res. Commun. 2003. V. 307. P. 547–552. https://doi.org/10.1016/S0006-291X(03)01222-1

- Baranowska B., Baranowski T. // Mol. Cell Biochem. 1977. V. 16. P. 43–48. https://doi.org/10.1007/BF01769838
- 44. Baranowska B., Baranowski T. // Mol. Cell Biochem. 1977. V. 17. P. 75–83. https://doi.org/10.1007/BF01743430
- 45. *Castello A., Hentze M.W., Preiss T. //* Trends Endocrinol. Metab. 2015. V. 26. P. 746–757. https://doi.org/10.1016/j.tem.2015.09.012
- 46. Schmidt E.E., Colowick S.P. // Arch. Biochem. Biophys. 1973. V. 158. P. 458–470. https://doi.org/10.1016/0003-9861(73)90537-7
- 47. Salas M., Vinuela E., Sols A. // J. Biol. Chem. 1965. V. 240. P. 561–568. https://doi.org/10.1016/S0021-9258(17)45210-0
- 48. Bessell E.M., Thomas P. // Biochem. J. 1973. V. 131. P. 77–82. https://doi.org/10.1042/bj1300020p
- 49. Solovjeva O.N. // Biochemistry (Moscow). 2002. V. 67. P. 667–671. https://doi.org/10.1023/a:1016198321838
- 50. Brückner J. // Biochem. J. 1955. V. 60. P. 200–205. https://doi.org/10.1042/bj0600200
- Barbas C.F., 3rd, Burton D.R., Scott J.K., Silverman G.J. // CSH Protoc. 2007. P. pdb.ip47. https://doi.org/10.1101/pdb.ip47
- Mansour T.E. // J. Biol. Chem. 1963. V. 238. P. 2285– 2292. https://doi.org/10.1016/S0021-9258(19)67967-6
- 53. Fromm H.J., Zewe V. // J. Biol. Chem. 1962. V. 237. P. 3027–3032. https://doi.org/10.1016/S0021-9258(18)50115-0
- 54. Cech T.R. // Cold Spring Harb. Perspect. Biol. 2012. V. 4. P. a006742. https://doi.org/10.1101/cshperspect.a006742
- Robertson M.P., Joyce G.F. // Cold Spring Harb. Perspect. Biol. 2012. V. 4. P. a003608. https://doi.org/10.1101/cshperspect.a003608

A New Complex of the Glucose Phosphate Isomerase Ribozyme with the Enzyme Hexokinase in Yeast

O. N. Solovjeva*,

[#]Phone: +7(495) 939-14-56; e-mail: soloveva_o@list.ru *Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory 1/40, Moscow, 119234 Russia

The existence of a previously unknown ribozyme with the catalytic function of glucose phosphate isomerase was shown. It catalyzes the interconversion of glucose 6-phosphate and fructose 6-phosphate. This ribozyme was found in baker's yeast *Saccharomyces cerevisiae* and was isolated as a complex with the enzyme hexokinase. The complex was easily isolated on an immunoaffinity column with antibodies to hexokinase. The ribozyme consists of 41-42 nucleotides and has a molecular weight of about 14.15-14.5 kDa. $K_{\rm m}$ and $V_{\rm max}$ are accordingly 0.14 ± 0.02 mM and 14.0 ± 1.3 U/mg for glucose 6-phosphate and 0.2 ± 0.03 mM and 15.4 ± 1.4 U/mg for fructose 6-phosphate. These kinetic characteristics are approximately the same in the complex and for the free ribozyme. Hexokinase within the complex retains its catalytic activity.

Keywords: ribozymes, catalytic RNA, ribonucleoprotein, glucose phosphate isomerase, Saccharomyces cerevisiae