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Гемолизин II (HlyII) – один из ключевых патогенных факторов Bacillus cereus, порообразующий 
токсин с пространственной структурой типа β-баррель, обладающий С-концевым удлинением из 
94 а.о., обозначаемый как С-концевой домен HlyII (HlyIICTD). В данной работе проведен сайт-
направленный мутагенез аминокислотных остатков, лежащих на поверхности белковой глобулы 
HlyIICTD. Методом иммуноферментного анализа показано, что моноклональные антитела 
HlyIIC-16 и HlyIIC-23, полученные против HlyIICTD, взаимодействовали с интактным HlyIICTD 
гораздо эффективнее, чем с полноразмерным токсином и химерным белком – HlyIICTD, слитым 
с SlyD. Антитела HlyIIC-16 и HlyIIC-23 эффективно ингибировали взаимодействие друг друга с 
иммобилизованным HlyIICTD в иммуноферментном анализе, что свидетельствовало о близости их 
эпитопов на поверхности молекулы HlyIICTD. Для определения эпитопов HlyIIC-16 и HlyIIC-23 
использовали фаговый дисплей, сайт-направленный мутагенез и клонирование генов отдельных 
частей молекулы HlyIICTD. Пространственное моделирование HlyIICTD, слитого с SlyD, с 
использованием программы AlphaFold позволило предположить расположение эпитопов HlyIIC-16 
и HlyIIC-23 на участке Gly341–Gly364 белка HlyII. Продемонстрировано, что С-концевой домен 
может одновременно находиться в нескольких структурных состояниях (изоформах). В составе 
водорастворимой формы мономера полноразмерного токсина наблюдается переход пространствен- 
ной структуры HlyIICTD в стабильную форму.
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ВВЕДЕНИЕ

Bacillus cereus – оппортунистская грамположи- 
тельная спорообразующая бактерия [1], одним 
из ключевых вирулентных факторов которой 
выступает гемолизин II (HlyII), принадлежа- 
щий к группе β-пороформирующих токсинов [2].  
HlyII секретируется бактерией в виде водораст- 
воримых мономеров и олигомеризуется в при- 
сутствии мембран клеток-мишеней, образуя 
трансмембранную пору, что приводит к гибели  
клетки, обеспечивая бактериям доступ к пита- 
тельным веществам. HlyII содержит C-концевой 
домен (HlyIICTD), который состоит из 94 а.о. [3].  
Части этого домена, по-видимому, подвижны [4] 
и способны существовать в разных трехмерных 
структурах в зависимости от условий или окру- 
жения. Биоинформатические методы [5, 6] поз- 
воляют предположить, что домен HlyIICTD 
содержит внутренние неупорядоченные области,  
хотя в его структуре, определенной методом 
ЯМР, все элементы структурированы и упоря- 
дочены [7, 8]. Такое отличие теоретических 
и экспериментальных данных указывает на 
потенциальную возможность HlyIICTD менять 
свою структуру в разных условиях или находиться 
в различных изоформах [9].

В данной статье предпринята попытка ис- 
следовать структурные особенности HlyIICTD 
с помощью специфических моноклональных 
антител (mAbs), в частности изучить взаимо- 
действие этих антител с HlyIICTD в его различ- 
ных конформационных состояниях. Сочетание 
внутреннего беспорядка и трехмерной органи- 
зации белка, по всей видимости, позволяет 
структурно адаптироваться к разным состояниям, 
обеспечивающим основные процессы поро- 
образования, в том числе действовать как часть 
полноразмерного токсина при сближении в 
пространстве HlyIICTD с коровой частью HlyII. 
Любые переходные структуры стабилизируются 
в комплексе с белковыми партнерами [10]. 

Существенную роль в лабильности белков 
играют присутствующие в его составе пролино- 
вые остатки, т.к. они могут давать цис- и транс-
изоформы, а следовательно, белок при их наличии 
может существовать в нескольких изоформах. 
Изменение пространственной структуры проис- 
ходит за счет жесткой конформации пролина, 
изгибающего пептидную цепь [11, 12]. При изо- 

меризации пролиновые остатки влияют на из- 
менение пространственной структуры белка 
[13], что, в свою очередь, влияет на способность 
антител взаимодействовать с антигеном [14]. 
Существование изоформ может усиливать виру- 
лентность патогенов [15, 16]. Кроме того, большая 
гибкость полипептидных цепей в гидрофобных 
доменах обеспечивается довольно протяженными 
петлями, соединяющими элементы вторичной 
структуры [17]. 

Ранее авторами описано получение панели  
mAbs против HlyIICTD B. cereus [18], а также про- 
веден сайт-направленный мутагенез аминокис- 
лотных остатков, расположенных на поверхности 
пространственной структуры HlyIICTD (6d5z) 
[4], который приводил к изменениям эпитопной 
структуры, что подтверждало высокую конфор- 
мационную подвижность HlyIICTD, необходи- 
мую для функционирования HlyII. 

Цель данной работы – исследование лабиль- 
ности пространственной структуры C-концевого 
домена в составе полноразмерного токсина (HlyII),  
секретируемого B. cereus, с помощью моноклональ- 
ных антител против HlyIICTD [18].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Основные характеристики mAbs HlyIIC-16 
и HlyIIC-23. С использованием mAbs HlyIIC-16 
и HlyIIC-23 против С-концевого домена гемо- 
лизина II B. cereus было показано, что HlyIICTD 
способен ориентированно связываться с мем- 
бранами эритроцитов. Участки HlyIICTD, 
включающие эпитопы этих антител, не участ- 
вуют во взаимодействии с эритроцитами [18]. 
HlyIIC-16 и HlyIIC-23 взаимодействуют с С-кон- 
цевым доменом, а не с линкерным пептидом, 
тромбиновым сайтом или 6-His. Иммуноблот- 
тинг и иммуноферментный анализ (ИФА) пока- 
зали, что эти антитела эффективно взаимодейст- 
вуют с HlyIICTD и не способны взаимодейство- 
вать с рекомбинантным HlyII∆CTD, который не 
содержит С-концевого домена, но имеет линкерный 
пептид, сайт распознавания и расщепления тром- 
бином, аналогичный рекомбинантному HlyIICTD, 
и блок из 6 гистидиновых остатков, расположенных 
на С‑конце анализируемого домена. Эксперименты 
проводили, как описано в работе [19]. 

Методом конкурентного ИФА показано, что 
присутствие в реакционной смеси немеченых 
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HlyIIC-20 не препятствовало биотинилированным 
HlyIIC-16 (HlyIIC-16био) (рис. 1а) и HlyIIC-23 
(HlyIIC-23био) (рис. 1б) взаимодействовать 
с иммобилизованным на планшеты для ИФА 
HlyIICTD, т.е. антитела не конкурировали при 
связывании с антигеном. Следовательно, эпитопы 
этих антител не перекрываются на поверх- 
ности HlyIICTD. Антитела HlyIIC-16 и HlyIIC-23 
эффективно ингибировали взаимодействие друг  
друга с иммобилизованным HlyIICTD в ИФА 
(рис. 1), что свидетельствовало о близости распо- 
ложения их эпитопов на молекуле HlyIICTD. 

Фаговый дисплей. Особенности взаимодейст- 
вия антител HlyIIC-16 и HlyIIC-23 с HlyIICTD и 
полноразмерным токсином, а также их взаимо- 
действие с HlyIICTD, связанным с поверхностью 

эритроцитов, поставили задачу идентификации 
эпитопа, распознаваемого этими антителами. 
Антигенную детерминанту HlyIICTD, распозна- 
ваемую антителами HlyIIC-16 и HlyIIC-23, опре- 
деляли методом пептидного фагового дисплея. 
С помощью программы GeneRunner были про- 
анализированы полученные нуклеотидные после- 
довательности и определены аминокислотные 
последовательности пептидов, распознаваемых 
антителами HlyIIC-16 и HlyIIC-23, экспонируемые 
в белке pIII бактериофагов (рис. 2а, 2в). На рис. 2  
показано выравнивание аминокислотных последо- 
вательностей пептидов с помощью алгоритма 
T-Coffee [20]. Наиболее часто во всех пептидах 
встречаются аминокислотные остатки аспарагина, 
глутамина, пролина (N, Q, P) и ароматические –  

Рис. 1. Ингибирование (в ИФА) взаимодействия иммобилизованного HlyIICTD с mAbs HlyIIC-16 и HlyIIC-23 
друг другом и HlyIIC-20. (а) – Ингибирование взаимодействия HlyIIC-16био немечеными HlyIIC-23 и HlyIIC-20; 
(б) – ингибирование взаимодействия HlyIIC-23био немечеными HlyIIC-16 и HlyIIC-20. Реакцию визуализировали с 
помощью стрептавидина, конъюгированного с пероксидазой. Данные представлены как как Mean ± SD, n = 3. При 
ингибировании взаимодействия HlyIIC-16био с HlyIICTD mAbs HlyIIC-23 значение IC50 составило 1.712 мкг/мл; при 
ингибировании взаимодействия HlyIIC-23био с HlyIICTD mAbs HlyIIC-16 значение IC50 составило 1.617 мкг/мл.  
*p <0.03; **p <0.001, ANOVA.

(а)

(б)
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фенилаланин или триптофан (F или W). Обнару- 
жено, что пептид SETNSNPWKSRI при анализе 
HlyIIC-23 повторяется 9 раз (рис. 2в), однако в  
составе HlyIICTD не выявлено идентичной амино- 
кислотной последовательности. Поэтому при 
построении консенсуса учитывали все пептиды, 
взаимодействующие с моноклональными анти- 
телами. На рис. 2б и 2г показан консенсус амино- 
кислот пептидов, рассчитанный программой Web-
Logo [21] на основе ранее выровненных пептидных 
последовательностей, который указывает, что 
N, Q, P, W или F – аминокислоты, которые с 
наибольшей вероятностью образуют эпитоп, а 
также положительно заряженная аминокислота 
лизин (K), т.к. аминокислотная последовательность 
С-концевого домена не содержит аргининов (R). 
Мы полагаем, что эпитопы пространственные, т.е. 
на поверхности белка, в трехмерной структуре 
С-концевого домена, аминокислоты, находящиеся 
на разных участках полипептидной цепи, могут 
быть объединены таким образом, что образуют 
эпитопы, распознаваемые mAbs HlyIIC-16 и 
HlyIIC-23. Фаговый дисплей не позволил выявить 
эпитопы mAbs HlyIIC-16 и HlyIIC-23, но опреде- 
лил аминокислотные остатки, ответственные за  
взаимодействие этих антител с HlyIICTD, что по- 
служило основой для проведения сайт-направ- 
ленного мутагенеза.

Сайт-направленный мутагенез. На основе 
трехмерной структуры (PDB: 6d5z), определенной 
с помощью ЯМР [7], с учетом данных фаго- 
вого дисплея были созданы мутантные формы 
HlyIICTD и изучено их связывание с mAbs 
HlyIIC-16 и HlyIIC-23 с помощью ИФА. Му- 
тации описаны в работе [4]. Ранее Kaplan et al.  
[22] продемонстрировали влияние P405 на про- 
странственную структуру HlyIICTD. Введение 
замены P405M позволило снизить количество 
изоформ HlyIICTD, узнаваемых антителами. 
Было исследовано взаимодействие мутантных 
форм HlyIICTD, содержащих как одиночные, так  
и множественные аминокислотные замены с 
mAbs. Множественные замены включали амино- 
кислотные остатки, расположенные на поверхности 
HlyIICTD близко друг к другу (рис. 3).

Множественные замены (одновременно за- 
менены два, три или четыре аминокислотных 
остатка) вводили, предполагая, что введение оди- 
ночной замены аминокислотного остатка может  
незначительно сказаться на взаимодействии с 
антителом. Результаты анализа взаимодействия 
mAbs HlyIIC-16 и HlyIIC-23 с мутантными фор- 
мами представлены на рис. 3. HlyIICTD P405M 
N339A K340A – единственная мутантная форма, 
эффективность взаимодействия которой с mAbs 
HlyIIC-16 и HlyIIC-23 была ниже в сравнении с 
интактным HlyIICTD. При этом по отдельности за- 

Рис. 2. Выравнивание аминокислотных последовательностей пептидов, определенных с помощью фагового дисплея 
для mAbs HlyIIC-16 (а) и HlyIIC-23 (в), и консенсусной последовательности для mAbs HlyIIC-16 (б) и HlyIIC-23 (г), 
рассчитанной с помощью программы WebLogo [21].Фиолетовым цветом выделены остатки ароматических аминокислот, 
красным – положительно заряженных, зеленым – аспарагина, голубым – глутамина, желтым – пролина.

(а) (б)

(в) (г)
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мена P405M и двойная замена N339A, K340A не 
уменьшали уровень взаимодействия, что свиде- 
тельствовало о неаддитивном влиянии амино- 
кислотных замен на эффективность связывания 
с антигеном. Двойная замена E379G, K380G уси- 
ливала связывание как HlyIIC-16, так и HlyIIC-23. 
Формы, содержащие мутации по пролину 405:  
P405M, P405M, N377A, P405M, N392A – преи- 
мущественно усиливали взаимодействие анти- 
тела HlyIIC-23 с HlyIICTD. Полученные резуль- 
таты влияния мутаций на взаимодействие антител 
с антигеном можно объяснить их влиянием на 
пространственную структуру всего домена. За- 
мена пролина P405M приводила к увеличе- 
нию доступности эпитопа антител HlyIIC-16 и 
HlyIIC-23. На рис. 4 показано, что замененные 
аминокислоты расположены на разных сторо- 
нах HlyIICTD. По-видимому, эти аминокислоты 
критичны для всей пространственной структуры 
С-концевого фрагмента.

Данные, полученные с применением мутант- 
ных форм HlyIICTD, показали лабильность про- 

Рис. 3. Сравнение взаимодействия HlyIIC-16, HlyIIC-23, HlyIIC-20 и HlyIIC-40 с иммобилизованным HlyIICTD и его 
мутантными формами в ИФА. Данные представлены как как Mean ± SD, n = 3. * Статистически значимые различия 
в сравнении с контролем (HlyIICTD АТСС 14579) для HlyIIC-16 (p < 0.05, тест Манна–Уитни); ** статистически 
значимые различия в сравнении с контролем (HlyIICTD АТСС 14579) для HlyIIC-23 (p < 0.05, тест Манна–Уитни).

Рис. 4. Локализация аминокислотных замен на по- 
верхности HlyIICTD (PDB ID: 6D5Z). Желтыми кру- 
гами выделены замены, критичные для конфор- 
мационных эпитопов mAbs HlyIIC-16 и HlyIIC-23.

странственной структуры домена, что согласуется 
с предполагаемыми конформационными измене- 
ниями, возникающими при функционировании 
токсина, которое включает различные стадии, 
такие как олигомеризация и формирование поры на 
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мембране клетки-мишени. Продемонстрирована 
неаддитивность влияния аминокислотных за- 
мен на взаимодействие с антителами, т.е. различ- 
ное влияние одиночных и суммарных замен на  
пространственную структуру HlyIICTD. Воз- 
можные изменения структуры белка при введе- 
нии мутаций в том случае, когда они влияют на 
конформационные изменения в белке, схема- 
тично представлены на рис. 5. Если представить, 
что одна из мутаций приводит к повороту части 
белковой структуры, не влияя на доступность 
эпитопа, а другая к сдвигу этой части структуры, 
увеличивая доступность эпитопа, то вполне 
вероятно, что в сумме эти аминокислотные замены 
приведут к уменьшению доступности эпитопа.

поскольку основывается на экспериментальных 
исследованиях разных глобулярных белков [9]. 

Взаимодействие mAbs HlyIIC-16 и HlyIIC-23 
с полноразмерным HlyII. Антитела HlyIIC-16 и  
HlyIIC-23 окрашивали полноразмерный HlyII  
в иммуноблоттинге [18], но в ИФА они взаимо- 
действовали с иммобилизованным полноразмер- 
ным HlyII значительно меньше, чем с HlyIICTD. 
На рис. 7 показаны кривые титрования антител, 
характеризующие данные взаимодействия. Полу- 
ченные результаты свидетельствуют о недоступ- 
ности эпитопов, узнаваемых этими антителами, 
на поверхности полноразмерного токсина, что 
предполагает их расположение в точке сближения 
С-концевого домена и коровой части токсина, при 
котором эпитопы экранированы. 

Антитела HlyIIC-16 и HlyIIC-23 распознают 
HlyIICTD, связанный с поверхностью эритроцитов 
[18]. По-видимому, область поверхности HlyIICTD, 
узнаваемая этими антителами, не участвует во 
взаимодействии с мембраной клетки-мишени, в 
структуре полноразмерного токсина этот участок 
сближен с коровой частью. В работе Kaplan et al. 
[7] предполагалось сближение коровой части и 
HlyIICTD в полноразмерной молекуле HlyII, что 
в данной работе экспериментально подтверж-
дено анализом взаимодействия mAbs HlyIIC-16 
и HlyIIC-23 с полноразмерным токсином (рис. 7);  
мономерная форма HlyII действительно сущест- 

Рис. 5. Схематичное изображение возможных из- 
менений трехмерной структуры при мутагенезе. 
Желтым и зеленым кругами показаны условные 
части белка.

Биоинформатический анализ также подт- 
верждает лабильность пространственной струк- 
туры HlyIICTD. На рис. 6 для разных участков 
аминокислотной последовательности HlyIICTD 
показана вероятность быть внутренне неупорядо- 
ченными (лабильными) [5, 6]. N-концевую часть 
HlyIICTD (320–360 а.о.) программы предсказывают 
как внутренне неупорядоченную. При этом по 
данным ЯМР [22] весь HlyIICTD структурирован. 
Структура HlyIICTD, определенная с помощью 
ЯМР, представляет собой псевдобаррель, сос- 
тоящий из двух α-спиралей, окруженных пятью  
β-листами. Такое расхождение данных свиде- 
тельствует о возможной подвижности N-конце- 
вой части HlyIICTD. Интерпретация результатов 
расчета программы PONDR вполне оправдана, 

Рис. 6. Вероятность аминокислотных остатков HlyIICTD  
быть внутренне неупорядоченными (подвижными 
или дестабилизированными) [5, 6, 23]. Нумерация 
аминокислотных остатков соответствует полноразмер- 
ному токсину. Аминокислотные остатки, для которых 
предсказывается значение PONDR score > 0.5, считаются 
либо неупорядоченными, либо дестабилизированными. 
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вует в форме, в которой HlyIICTD и коровая часть  
взаимодействуют друг с другом. Kaplan et al. [7] 
использовали математическое моделирование 
для прогнозирования взаимодействий специфи- 
ческих аминокислотных остатков при сближе- 
нии отдельных доменов, составляющих полно- 
размерную молекулу. По мнению этих авторов, 
пространственная структура поддерживается 
гидрофобными взаимодействиями между арома- 
тическими аминокислотными остатками.

Взаимодействие mAbs с участками HlyIICTD 
в составе гибридов со SlyD. Зависимость стаби- 
лизации структуры HlyIICTD от присутствия 
этого домена в составе белковых комплексов, как в  
случае полноразмерного токсина, была подтверж- 
дена созданием генно-инженерных конструк- 
ций, кодирующих фрагменты, соответствующие 
половинам аминокислотной последовательности 
HlyIICTD, слитыми со SlyD. Белок-шаперон ис- 
пользовали для повышения вероятности правиль- 
ного сворачивания рекомбинантных продуктов 
[24]. Проверено связывание HlyIIC-16 и HlyIIC- 
23 с полученными рекомбинантными белками.  
HlyIIC-16 и HlyIIC-23 гораздо хуже взаимодейст- 
вовали с рекомбинантным SlyD-HlyIICTD, чем  
с интактным HlyIICTD (рис. 8). При этом анти- 
тела гораздо лучше связывались с белком SlyD-
HlyIICTD, содержащим N-концевую половину 
последовательности HlyIICTD (HlyII D319–G364), 

чем с C-концевой половиной (HlyII G364–I412). 
При взаимодействии HlyIICTD со SlyD эпитопы 
недоступны для HlyIIC-16 и HlyIIC-23. Отрезание 
С-концевой половины HlyIICTD ослабило взаимо- 
действие между SlyD и HlyIICTD и привело к 
увеличению доступности эпитопов, что подт- 
верждает предположение о том, что эпитопы анти- 
тел HlyIIC-16 и HlyIIC-23 конформационно-
зависимые. Эпитоп для антитела HlyIIC-16 в 
составе рекомбинантных белков SlyD-HlyIICTD  
и SlyD-HlyIICTD (HlyII D319–G364) менее до- 
ступен для взаимодействия в ИФА, чем для анти- 
тела HlyIIC-23 (рис. 8).

Снижение эффективности взаимодействия 
HlyIIC-16 относительно HlyIIC-23 при исполь- 
зовании в качестве антигена участка HlyII D319–
G364 в слитом со SlyD состоянии может указывать 
на то, что эпитопы этих антител перекрываются 
не полностью (рис. 8), т.е. mAbs HlyIIC-16 и 
HlyIIC-23 имеют перекрывающийся участок свя- 
зывания согласно результату, полученному конку- 
рентным ИФА (рис. 1), но перекрываются не по 
всей площади антигенной детерминанты.

На рис. 9в и 9г представлены результаты моде- 
лирования структуры белков с использованием 
программы AlphaFold [25]. Согласно этим дан- 
ным, наиболее вероятным представляется распо- 
ложение эпитопов антител HlyIIC-16 и HlyIIC-23 
на 2-й четверти полипептидной цепи HlyIIСTD 

Рис. 7. Взаимодействие mAbs HlyIIC-16 и HlyIIC-23 с иммобилизованными HlyIICTD и HlyII АТСС 14579. Данные 
представлены как Mean ± SD, n = 5. При взаимодействии HlyIIC-16 с HlyIICTD значение ЕС50 составило 0.3043 мкг/мл;  
при взаимодействии HlyIIC‑23 с HlyIICTD значение ЕС50 составило 0.2053 мкг/мл. # Статистически значимые раз- 
личия для HlyIIC-23 (p < 0.05, тест Манна–Уитни); ## статистически значимые различия для HlyIIC-16 (p <0.05, тест 
Манна–Уитни).
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(HlyII G341–G364, фиолетовый участок на рис. 9). 
На рис. 9д, 9е предполагаемые эпитопы антител 
обозначены фиолетовым овалом (K355–N360). 

Ограничение взаимодействия mAbs HlyIIC-16 
и HlyIIC-23 с полноразмерным HlyII и SlyD-
HlyIICTD может быть также связано с экраниза- 
цией эпитопов коровой частью белка.

В работе [4] показано, что в конформационную 
детерминанту, узнаваемую mAb HlyIIC-20, входят 

аминокислотные остатки N339 и K340. Несмотря 
на то что положение эпитопа для антител HlyIIC- 
16 и HlyIIC-23 определено довольно приблизи- 
тельно, тем не менее полученные данные позво- 
лили уточнить расположение эпитопа для mAb  
HlyIIC-20. Поскольку антитела HlyIIC-16 и 
HlyIIC-23 не конкурируют с HlyIIC-20, то их  
эпитопы не должны перекрываться на поверх- 
ности белковой глобулы. Авторы полагают, что  

Рис. 8. Сравнение взаимодействия HlyIIC-16, HlyIIC-23, HlyIIC-20 и HlyIIC-40 с иммобилизованными HlyIICTD, 
SlyD-HlyIICTD, SlyD-HlyIICTD (HlyII D319–G364) и SlyD-HlyIICTD (HlyII G364–I412). Данные представлены как 
Mean ± SD, n = 5. * Статистически значимые различия в сравнении с контролем (HlyIICTD) для HlyIIC-16 (p <0.05, 
тест Манна–Уитни); ** статистически значимые различия в сравнении с контролем (HlyIICTD) для HlyIIC-23 (p <0.05, 
тест Манна–Уитни); # статистически значимые различия при межгрупповом сравнении (p <0.05, тест Манна–Уитни); 
## статистически значимые различия при сравнении взаимодействия HlyIIC-16 и HlyIIC-23 с иммобилизованным 
SlyD-HlyIICTD (HlyII D319 – G364) (p <0.05, тест Манна–Уитни).

Рис. 9. Пространственные модели HlyIICTD (PDB ID: 6D5Z) (а, б, д, е). Компьютерное моделирование SlyD-HlyIICTD 
с помощью программы AlphaFold 3 [26, 27] (в, г). 

(а) (б)

(в) (г)

(д) (е)
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эпитоп HlyIIC-20 расположен на стыке желтой 
α-спирали HlyIICTD (HlyII D319–G341) и зе- 
леной β-шпильки HlyIICTD (HlyII G364–S388)  
(рис. 9) и, соответственно, затрагивает две об- 
ласти HlyII N339–G341 и Y367–K370. Красный 
овал на рис. 9д и 9е показывает, с какой стороны 
HlyIICTD, вероятнее всего, связывается анти- 
тело HlyIIC-20. Такое положение эпитопа (за- 
трагивающее два разнесенных по цепи участка 
на HlyIICTD) подтверждается в случае замены 
аминокислотных остатков Y367G, E368A, D369A 
(на зеленой β-шпильке), которые снижают свя- 
зывание антитела HlyIIC-20. При этом замены в 
С-концевом β-слое HlyIICTD (оранжевый цвет  
на рис. 9) потенциально способны влиять на вза- 
имное расположение участков белка (обозна- 
чены желтым и зеленым цветом на рис. 9) и, со- 
ответственно, на формирование эпитопа, узна- 
ваемого HlyIIC-20. На рис. 9 видно, что согласно  
структуре PDB: 6d5z, оранжевый C-концевой 
β-слой вклинивается между желтой α-спиралью 
и зеленой β-шпилькой. Изменения конформации 
или положения C-концевого β-слоя должны в зна- 
чительной степени сказываться на взаимодейст- 
вии HlyIIC-20 с антигеном и, следовательно, на 
структуре конформационного эпитопа. Резуль- 
таты, представленнные на рис. 3, подтверждают 
это заключение, все замены пролина 405 влияли  
на связывание антитела HlyIIC-20 с иммобилизо- 
ванными мутантными формами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Штаммы, плазмиды и ферменты. В работе 
использовали эндонуклеазы рестрикции KpnI, 
NdeI, BamHI и XhoI (Thermo Scientific, США), 
T4-ДНК-лигазу (NEB, США), TaqSE-ДНК-
полимеразу (SibEnzyme, Россия). 

Cайт-направленный мутагенез HlyIICTD. 
Для получения мутантов в качестве матрицы 
использовали созданную ранее плазмиду pET29, 
содержащую последовательность hlyIIctd [18]. 
Мутанты hlyIIctd были получены с помощью ПЦР  
с перекрывающимися праймерами [28]. Все му- 
танты, кроме мутантной формы HlyIICTD E408G,  
K410G, I412G, были получены и описаны ранее  
в работе [4]. Для получения HlyIICTD E408G, 
K410G, I412G использовали праймеры CTD_ 
NdeI_For 5′-TTACATATGGATAACCAAA-
AAGCCCTT-3′ и EKI408G Rev 5′-TATTAGGT-
ACCTCCCTGACCAATTCCGATATAAGGTCCTT- 
TAATG-3′. Для всех мутантов перекрывающаяся 
область праймеров содержала интересующую му- 
тацию. Все плазмиды предварительно проверяли 
секвенированием перед трансформацией в экс- 
прессирующий штамм E. coli BL21(DE3).

Получение фрагментов HlyIICTD, слитых 
с белком SlyD. Участки гена hlyII, кодирующие 
фрагменты HlyIICTD, амплифицировали с по- 
мощью праймеров, указанных в табл. 1. Продукты 
ПЦР клонировали с помощью векторной плаз- 
миды pTSL [29] по сайтам рестрикции BamHI и 

Таблица 1. Праймеры для клонирования участков HlyIICTD

Название фрагмента Последовательность олигонуклеотидов (5′→3′)

hlyIIctd
TTACATATGGGATCCGATAACCAAAAAGCCCTTG
TAATACTCGAGTCAGATCTGTTTAATCTCGATA

hlyII (D319–G364)
TTACATATGGGATCCGATAACCAAAAAGCCCTTG
TTAGGTACCCTCGAGTCAACCATAACCAGCATTGC

hlyII (G364–I412)
TTACATATGGGATCCGGTATCAGTTACGAAG
TAATACTCGAGTCAGATCTGTTTAATCTCGATA

hlyII (D319–G341)
TTACATATGGGATCCGATAACCAAAAAGCCCTTG
TTAGGTACCCTCGAGTCATCCTTTGTTAAGTTTATCATTC

hlyII (G341–G364)
TTACATATGGGATCCGGAAAAGGGAAATTATCTC
TTAGGTACCCTCGAGTCAACCATAACCAGCATTGC

hlyII (G364–S388)
TTACATATGGGATCCGGTATCAGTTACGAAG
TTAGGTACCCTCGAGTCATGATTTTTCATTAAAAGTATAGACC

hlyII (S388–I412)
TTACATATGGGATCCTCAACTGTAGGCAATATC
TAATACTCGAGTCAGATCTGTTTAATCTCGATA
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XhoI. Таким образом, белки, кодируемые полу- 
ченными плазмидами, состояли из шаперона 
SlyD с 6 гистидиновыми остатками на N-конце и 
фрагмента HlyIICTD на C-конце.

Экспрессия и очистка HlyIICTD и его мутант- 
ных форм. Экспрессию и очистку HlyIICTD His6 
и его мутантных форм проводили, как описано в 
работе [18].

Экспрессия и очистка фрагментов HlyIICTD,  
слитых с белком SlyD. Для экспрессии фраг- 
ментов использовали штамм E. coli BL21(DE3), 
трансформированный плазмидой pTSL с геном  
соответствующего фрагмента. Клетки выращи- 
вали в среде LB, содержащей 100 мкг/мл ампи- 
циллина, при 37°C до OD600 0.5–0.6 при ин- 
тенсивной аэрации. Экспрессию фрагментов 
индуцировали добавлением изопропил-β-D-1-тио- 
галактопиранозида до конечной концентрации  
0.1 мM. Дальнейшее культивирование осущест- 
вляли при 20°C в течение 12 ч с интенсивной 
аэрацией. Для выделения фрагментов HlyIICTD,  
слитых с белком SlyD, клетки ресуспендиро- 
вали в буфере T (50 мМ Tris-HCl, 300 мМ NaCl,  
5% глицерина, рН 7.5, 1 мМ фенилметилсуль- 
фонилфторид) с 20 мМ имидазолом и разрушали 
на ультразвуковом дезинтеграторе QSonica Q700 
(QSonica, США) (8 циклов по 30 с каждый, ампли- 
туда 35%, перерывы по 2 мин). Полученный 
клеточный лизат использовали для очистки с по- 
мощью металл-аффинной хроматографии на 
колонке с Ni-NTA-агарозой (Qiagen, США) со- 
гласно протоколу производителя.

Иммуноферментный анализ. Конкурентный 
ИФА и исследование взаимодействия mAbs с ре- 
комбинантными белками и мутантными формами 
проводили, как описано в работе [4].

Статистическая обработка результатов. Все 
результаты представлены в виде средних значе- 
ний (Mean) и стандартных отклонений (SD). 
Сравнение результатов ингибирования взаимо- 
действия mAb с антигеном для каждой экспери- 
ментальной лунки с соответствующей концен- 
трацией проводили тестом ANOVA. Значения IC50 
и EC50 определяли в программе GrahpPad Prism 
8. Статистически значимые различия взаимо- 
действий mAb с HlyIICTD и его мутантными фор- 
мами выявляли тестом Манна–Уитни (p <0.05). 
Описательная статистика была выполнена в 
программном обеспечении Microsoft Excel 2016. 

ЗАКЛЮЧЕНИЕ

HlyII – важнейший патогенный фактор B. cereus,  
С-концевой домен которого крайне важен для 
цитолитического действия токсина. В настоящей 
работе показано, что HlyIICTD представляет собой 
конформационно-подвижный белок, который 
стабилизируется в составе полноразмерного HlyII  
и при взаимодействии с шапероном SlyD. Срав- 
нение взаимодействия одновременно нескольких 
антител с интактным HlyIICTD и полученными 
мутантами позволило определить положение кон- 
формационных эпитопов HlyIIC-16 и HlyIIC-23  
на участке HlyII G341–G364. В результате ра- 
боты с использованием сайт-направленного му- 
тагенеза и трехмерного моделирования было уточ- 
нено расположение пространственного эпитопа 
для моноклонального антитела HlyIIC-20.

При терапии пациентов с ослабленным иммуни- 
тетом следует иметь в виду, что условно-патоген- 
ная бактерия B. cereus распространена в среде 
обитания человека, поэтому расширение научных 
знаний о структурно-функциональных механизмах 
действия вирулентных факторов этой бактерии 
имеет практическое значение. Выявление участ- 
ков, значимых для функционирования вирулент- 
ного фактора, и исследование его эпитопной 
структуры – первые шаги при создании прототипов 
лекарственных и вакцинных препаратов, направ- 
ленных на защиту от инфекции, что в перспективе 
будет способствовать их эффективной разработке.
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Hemolysin II (HlyII) is one of the key pathogenic factors of Bacillus cereus, a pore-forming toxin with 
a spatial structure of the β-barrel type, possessing a C-terminal extension of 94 amino acid residues, de- 
signated as the C-terminal domain of HlyII (HlyIICTD). In this work, site-directed mutagenesis of amino 
acid residues lying on the surface of the HlyIICTD protein globule was carried out. The work has been 
demonstrated that the C-terminal domain can simultaneously exist in several structural isoforms. The move 
of the three-dimensional structure of HlyIICTD into a stable form as a part of water-soluble full-length toxin 
monomer is observed. Recombinant proteins and their mutant forms using producing strain Escherichia 
coli BL21(DE3) were obtained. Their interaction with monoclonal antibodies HlyIIC-16 and HlyIIC-23 by 
enzyme immunoassay was studied. To define the epitopes of the phage display of HlyIIC-16 and HlyIIC-23, 
site-directed mutagenesis, gene cloning of individual parts of the HlyIICTD molecule, three-dimensional 
modeling of HlyIICTD fused to SlyD using the AlphaFold program were used. It was shown that mono-
clonal antibodies obtained against HlyIICTD interacted with intact HlyIICTD much more effectively than 
with the full-length toxin and the chimeric protein – HlyIICTD fused with SlyD. Antibodies HlyIIC-16 and 
HlyIIC-23 effectively inhibited each other’s interaction with immobilized HlyIICTD in an enzyme-linked 
immunosorbent assay, indicating the proximity of their epitopes on the surface of the HlyIICTD molecule. 
Phage display, site-directed mutagenesis, and gene cloning of individual parts of the HlyIICTD molecule 
were used to determine the epitopes of HlyIIC-16 and HlyIIC-23. Spatial modeling of HlyIICTD fused 
to SlyD using the AlphaFold program suggested the location of the HlyIIC-16 and HlyIIC-23 epitopes 
on the Gly341–Gly364 region of the HlyII protein. It was demonstrated that the C-terminal domain can 
simultaneously exist in several structural states (isoforms). In the water-soluble form of the full-length toxin 
monomer, a transition of the spatial structure of HlyIICTD to a stable form is observed.

Keywords: Bacillus cereus hemolysin II, protein spatial structure, epitope, monoclonal antibody, phage 
display, site-directed mutagenesis


