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ВВЕДЕНИЕ

Природные липокалины представляют собой 
семейство небольших белков, встречающихся в 
различных биологических системах [1]. Они имеют  
общую β-структурную укладку и обладают способ- 
ностью к комплексообразованию малых моле- 
кул для различных физиологических целей. Охарак- 
теризована серия различных изотипов липо- 
калина с разной специфичностью к лиганду и фи- 
зиологической функцией. Биомаркеры группы 
DiB1-3 – первые примеры использования бакте- 
риального липокалина Blc для создания новых 
флуоресцентных биомаркеров на основе неко- 
валентных комплексов генно-инженерных ва- 

риантов Blc (в качестве флуороген-активирующего 
белка, ~20 кДа) с синтетическим GFP-подобным 
хромофором M739 (табл. 1) [2–5]. Длина волны 
эмиссии DiB3-F53L располагается в оранжево-
красной области спектра. Флуороген M739 де- 
монстрирует быстрое проникновение в клетку и 
обратимое мечение, что позволяет легко настраи- 
вать плотность мечения в живых клетках. Это 
значительно упрощает окрашивание клеток, поз- 
воляя проводить более сложные эксперименты. В 
одном эксперименте можно комбинировать раз- 
личные системы мечения с временным разделением 
на основе флуорогена. 
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М739 обладает повышенной яркостью флуоресценции по отношению к известному родительскому 
биомаркеру DiB3, что выдвигает его в число перспективных маркеров для мечения биологических 
объектов в клеточной биологии, а также в качестве стартового объекта для последующего дизайна 
новых более ярких биологических маркеров.
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Липокалин Blc, использованный для связы- 
вания различных малых молекул, оказался много- 
обещающим каркасом для создания систем марки- 
ровки на основе флуорогена. Полученные комп- 
лексы демонстрируют яркую флуоресценцию и 
существенно более высокую фотостабильность, 
чем коммерческие биомаркеры mKate и EGFP,  
и представляют собой первые примеры дизайна  
новых флуоресцентных биомаркеров с использо- 
ванием липокалина. 

Целью данной работы было при помощи рас- 
четных методов исследовать взаимодействие GFP-
подобного хромофора M739 как с диким типом 
белка DiB3, так и с мутантом DiB3-F53L.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Стартовая модель оранжево-красного белка 
DiB3-F53L для молекулярно-динамических (МД)  
расчетов получена с помощью программы молеку- 
лярной графики COOT [5] на основе рентгеновской 
пространственной структуры DiB1 [3] с предвари- 
тельным введением соответствующих аминокис- 
лотных замен на стереографической станции. Дан- 
ный комплекс обладает повышенной яркостью 
флуоресценции по отношению к родительскому 
биомаркеру DiB3, что выдвигает его в число перс- 
пективных маркеров для мечения биологических 
объектов в клеточной биологии, а также в качестве 
стартового объекта для последующего дизайна 
новых более ярких биологических маркеров.

Устойчивость пространственной структуры 
модели белка DiB3-F53L исследовали при помощи 
метода МД (см. раздел “Эксперим. часть”). На 
рис. 1а показано изменение величины RMSD бел- 
ков DiB3 и DiB3-F53L в течение 10 нс МД. Хо- 
рошо видно, что кривые RMSD быстро выходят 
на насыщение, подтверждая, таким образом, 
устойчивость стартовых структур белков в водном 
растворителе. Средние значения RMSD для DiB3 

и DiB3-F53L составили 1.135 ± 0.004 и 1.136 ±  
0.0043 (здесь и далее среднее ± стандартная ошиб- 
ка среднего) соответственно.

Протяжку синтетического GFP-подобного хро- 
мофора M739 во внутренней полости белков DiB3  
и DiB3-F53L осуществляли при помощи метода  
управляемой МД [12]. Для определения энергети- 
ческого профиля M739 в связывающей полости 
нативного и мутированного белков мы провели пять 
независимых коротких симуляций длительностью 
2 нс, отличающихся стартовыми скоростями ато- 
мов модели.

На рис. 1б показано изменение величин RMSD  
в течение 2 нс МД, управляемой DiB3 и DiB3-
F53L при протяжке молекулы хромофора вглубь 
связывающей ниши белков. Средние значения 
RMSD для DiB3 и DiB3-F53L составили 0.911 ±  
0.005 и 0.933 ± 0.007 соответственно. Таким обра- 
зом, можно заключить, что протяжка молекулы 
М739 не влияет на конформацию нативного и 
мутированного белков. 

На рис. 1в представлено изменение расстояния 
между центром масс хромофора М739 и Сα-
атомом остатка Q141 на дне внутренней полости в 
численных экспериментах по протяжке молекулы 
хромофора. На рис. 1г показано изменение энергии 
взаимодействия хромофор–белок при протяжке 
хромофора М739 в полости белка. Видно, что 
поступательное движение молекулы хромофора 
вглубь полости (рис. 1в) сопровождается ростом 
энергии взаимодействия (в абсолютных значениях) 
как в нативном, так и в мутированном белках. 
По мере продвижения хромофора наблюдается 
расхождение энергетических кривых белков DiB3  
и DiB3-F53L. В мутированном белке энергия 
взаимодействия хромофор–белок по мере продви- 
жения М739 вглубь ниши становится больше по 
сравнению с нативным белком, что коррелирует 
с увеличением интенсивности флуоресценции. 

Таблица 1. Фотофизические характеристики биомаркеров [3]

Характеристики DiB3-F53L [3] DiB3 [3] M739

Квантовый выход QY 0.26 0.16

l 546 546

l 562 565
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Анализ двух рядов данных, соответствующих 
энергиям взаимодействия хромофор–белок для 
DiB3 и DiB3-F53L, по критерию χ2 показал ста- 
тистическую значимость их различия (p <0.0001). 

На рис. 2 показана структурная модель белка 
DiB3-F53L в комплексе с хромофором М739, 
полученная в одной из пяти независимых протяжек 
М739 вглубь полости белка и соответствующая 
минимуму кривой энергетического профиля хро- 
мофор–белок (рис. 1г).

МД-расчеты позволили установить энергети- 
чески предпочтительное аминокислотное окруже- 
ние хромофора из 7 а.о. в активном центре белка 
(рис. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения МД-вычислений использовали 
компьютерную программу NAMD [6], для ви- 
зуализации траекторий и обработки расчетных 
данных – программу VMD [7]. Общую энергию 
рассчитывали как сумму энергетических вкла- 
дов, соответствующих отклонениям от равновесных  
значений длин связей, валентных и торсионных 
углов, а также вкладов, отвечающих ван-дер-вааль- 
совым и электростатическим взаимодействиям не- 
связанных пар атомов. Расчеты проведены в рам- 
ках полноатомного приближения с силовым полем  
CHARMM36 [8]. Температура была установлена 
при 300 K, давление поддерживали на стандарт- 
ном уровне 1 атм. с использованием динамики 
Ланжевена. Применяли модель явного раствори- 
теля (TIP3P) с добавлением 0.15 М NaCl. Для учета 
вклада от электростатических взаимодействий 
атомов использовали метод Particle Mesh Ewald 
[9, 10], для параметризации лиганда (молекулы 
хромофора) – сетевой ресурс CGenFF (https://
cgenff.com/).

Расчеты проводили по следующей схеме: 
минимизация общей энергии, термодинамическое 
уравновешивание (4 нс) и молекулярная дина- 
мика (10 нс). На первых двух этапах положе- 
ние (координаты) атомов основной цепи белка и 
тяжелых атомов молекулы хромофора фиксиро- 
вали при помощи системы пространственных 
ограничителей. На этапе молекулярной динамики 

(а)

(б)

(в)

(г)

Рис. 1. Графическое представление результатов рас- 
четов молекулярной динамики нативного DiB3 (wild,  
дикий тип) и мутанта DiB3-F53L. (а) – Зависимость 
RMSD белка от времени симуляции; (б) – зависимость 
RMSD белка от времени симуляции при протяжке 
молекулы хромофора вглубь связывающей полости 
белка; (в) – расстояние между центром масс молекулы 
хромофора и Сα-атомом Q141 при протяжке хромо- 
фора вглубь связывающей полости белка; (г) – энергия 
взаимодействия хромофор–белок при протяжке 
хромофора вглубь связывающей полости белка.

Рис. 2. Положение хромофора в активном центре 
белка DiB3-F53L.
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все ограничители снимали. Расчеты проводили с 
использованием временного шага интегрирова- 
ния 2 фс. Протяжку молекулы хромофора М739  
вглубь ниши белка осуществляли при помощи сис- 
темы коллективных переменных (colvars). Конфор- 
мационную стабильность модели нативного бел- 
ка DiB3 и белка с мутацией F53L исследовали 
расчетным методом молекулярной динамики 
(MД) [11]. Конформационную устойчивость белка 
оценивали по изменению среднеквадратического 
отклонения (RMSD) координат атомов (C, O, 
Cα, N) основной цепи. Расчеты проводили на 
суперкомпьютере Ломоносов-2 (Т-Платформы, 
Россия) Центра высокопроизводительных вы- 
числений МГУ им. М.В. Ломоносова.

ЗАКЛЮЧЕНИЕ

Флуоресцентная визуализация объектов в жи- 
вых клетках остается технически сложной задачей,  
в основном из-за фоторазложения флуоресцент- 
ных меток. Эта проблема эффективно решается  
на основе современного подхода путем исполь- 
зования нековалентных комплексов флуороген-
активирующих белков с синтетическими краси- 
телями – флуорогенами. После фотообесцвечи- 
вания флуороген в комплексе заменяется новым 
доступным в растворе интактным флуорогеном. 
В этом направлении была создана серия новых 
флуоресцентных нековалентных комплексов се- 
рии DiB – генно-инженерных вариантов бакте- 
риального мембранного белка липокалина Blc в 
комплексе с синтетическим GFP-подобным хро- 
мофором. 

В настоящей работе представлены резуль- 
таты изучения методом молекулярной динамики 
пространственной организации мутанта DiB3-
F53L, а также его комплекса с GFP-подобным 
хромофором M739. Мы построили структурные 
модели белков DiB3 и DiB3-F53L и определили 
остатки в сайте связывания, вносящие наиболь- 
ший вклад в энергию взаимодействия хромофор–
белок. Мы установили, что мутантный белок DiB3- 
F53L сильнее взаимодействует с М739 по срав- 
нению с белком дикого типа DiB3. Комплекс DiB3-
F53L с хромофором М739 обладает повышен- 
ной яркостью флуоресценции по отношению к ро- 
дительскому белку DiB3, что делает его перспек- 
тивным объектом для использования в биологи- 
ческих исследованиях, а также для последующего 
дизайна новых более ярких биологических мар- 
керов.
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Three-Dimensional Structure of the Orange-Red Fluorescent 
Biomarker DiB3-F53L
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The 3D structure of the fluorescent protein DiB3-F53L, an orange-red fluorescent non-covalent complex 
of a genetically engineered variant of the bacterial protein lipocalin Blc with a synthetic GFP-like chromo-
phore M739, was studied by the molecular dynamics (MD) computational method. The chromophore was 
shown to interact more strongly with the mutated DiB3-F53L protein than with the native DiB3 protein. 
Calculations revealed the amino acids surrounding the chromophore at the binding site that contribute most 
strongly to the chromophore-protein interaction energy. The DiB3-F53L protein complex with the M739 
chromophore exhibits increased fluorescence brightness compared to the known parent biomarker DiB3, 
making it a promising marker for labeling biological objects in cell biology, as well as a starting point for 
the subsequent design of new, brighter biological markers.
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