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В обзоре обобщены современные представления о неклассических каннабиноидных рецепторах, 
их сигнальных механизмах и роли в физиологических и патологических процессах. Эти рецепторы 
(GPR55, GPR18, GPR119 и др.) характеризуются тканеспецифичной экспрессией, способностью 
взаимодействовать с различными G-белками и лиганд-зависимой активацией сигнальных путей. 
GPR55 участвует в регуляции боли, ангиогенеза и онкогенеза; GPR18 модулирует воспалительные 
и метаболические процессы; GPR119 рассматривается как перспективная мишень для терапии 
сахарного диабета. Установлена способность этих рецепторов к гетеродимеризации, что усложняет 
их фармакологический профиль. Неклассические каннабиноидные рецепторы представляют собой 
многообещающие мишени для лечения социально значимых заболеваний, таких как рак, диабет и 
нейродегенеративные патологии. Однако их контекст-зависимая активность требует дальнейших 
исследований для создания селективных терапевтических агентов.
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1. ВВЕДЕНИЕ

Эндогенные соединения, имитирующие физио- 
логические эффекты Δ9-тетрагидроканнабинола 
(Δ9-THC), были открыты в 1992–1995 гг., что по- 
служило отправной точкой для исследования эндо- 
каннабиноидной системы (ECS), включающей 
каннабиноидные рецепторы 1-го и 2-го типов (CB1 
и CB2), их лиганды, ферменты синтеза и деградации 
эндоканнабиноидов [1, 2].  Позднее, после обна- 
ружения Ca2+/Na+-канала TRPV1, также активи- 
руемого эндоканнабиноидами [3], система полу- 

чила название эндоканнабиноидной/эндованил- 
лоидной [4].

К классическим эндоканнабиноидам относят  
эндогенные соединения анандамид (AEA, N-арахи- 
доноилэтаноламин) и 2-арахидоноилглицерин 
(2-AG), образующиеся в результате расщепления 
липидов-предшественников из плазматической 
мембраны. Их деградация происходит под дейст- 
вием гидролазы амидов жирных кислот (FAAH) 
или моноацилглицеринлипазы (MAGL). Эндокан- 
набиноиды, в свою очередь, служат субстратами 
ферментного каскада арахидоновой кислоты – 
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циклооксигеназы COX-2 [5, 6], липоксигеназы 
или цитохрома P450 (эпоксигеназы) [7].

В нейрональной физиологии эндоканнабиноиды 
ингибируют высвобождение нейромедиаторов за 
счет изменения мембранной деполяризации, 
опосредованной рецепторами. Рецепторы эндокан- 
набиноидов/эндованиллоидов экспрессируются в 
различных областях мозга и на разных типах кле- 
ток. Их активация регулирует функции нейронов 
и глии, тем самым влияя на физиологические 
процессы в нервной системе и периферических 
тканях [8, 9].

Со временем пул эндогенных соединений, 
обладающих различной степенью сродства и 
селективности к каннабиноидным рецепторам, 
был значительно расширен. Структурно эти 
соединения представляют собой амиды и моно- 
эфиры длинноцепочечных жирных кислот. 
Подгруппа амидов включает производные жирных 
кислот с этаноламином, дофамином, серотонином, 
ГАМК, глицином, серином и рядом других амино- 
кислот [10].

В последнее время семейство рецепторов, 
способных активироваться эндоканнабиноидами, 
значительно расширилось за счет группы орфан- 
ных (сиротских) G-белок-сопряженных рецеп- 
торов, родственных CB1 и CB2. Эти рецепторы  
принято называть неклассическими каннабиноид- 
ными рецепторами [11] или GPCR, подобными 
каннабиноидным рецепторам (Cannabinoid Re- 
ceptor-Like GPCR) [12].

Несмотря на растущий объем исследований 
неклассических каннабиноидных рецепторов, 
их точная роль в ECS и потенциал в качестве 
терапевтических мишеней остаются недостаточно 
изученными. Отчасти это обусловлено сложной 
фармакологией этих рецепторов, которые могут 
активироваться широким спектром эндогенных 
и экзогенных лигандов, а также их способностью 
инициировать разнообразные сигнальные пути. 
Более того, экспрессия и функции неклассических 
каннабиноидных рецепторов, по-видимому, за- 
висят от ткани и контекста, что еще больше услож- 
няет их изучение.

Цель данного обзора – обобщение текущего  
состояния знаний о неклассических каннабиноид- 
ных рецепторах с акцентом на сигнальные меха- 
низмы и физиологические функции. Объединяя 
последние данные, обзор способствует лучшему  
пониманию сложности и разнообразия эндокан- 
набиноидной системы и ее роли в норме и па- 
тологии.

2. КЛАССИЧЕСКИЕ КАННАБИНОИДНЫЕ  
РЕЦЕПТОРЫ

Классические каннабиноидные рецепторы 
(CBR) представляют собой ключевой компонент 
эндоканнабиноидной системы и играют решаю- 
щую роль в опосредовании эффектов как эндо- 
генных, так и экзогенных каннабиноидов. Два  
наиболее изученных классических каннабиноид- 
ных рецептора – CB1 и CB2 – относятся к супер- 
семейству рецепторов, связанных с G-белком 
(GPCR), семейства α-родопсинов класса A (см. по- 
следние обзоры, например [13, 14]).

Обычно каннабиноидный рецептор содержит 
семь трансмембранных альфа-спиралей, организо- 
ванных в замкнутый пучок с помощью петель, про- 
стирающихся внутрь и наружу клетки. Кроме того,  
он включает внеклеточный N-конец и внутрикле- 
точный С-конец, начинающийся с короткого спи- 
рального сегмента (спираль 8), ориентированного 
параллельно поверхности мембраны. CB1 в пер- 
вую очередь взаимодействует с белком Gαi/o, а при 
определенных условиях может взаимодейство- 
вать также с Gαs и Gαq. В то же время CB2 связы- 
вается только с Gαi/o, инициируя последующую 
активацию и передачу сигнала [15].

Каннабиноидные рецепторы, как классические, 
так и неклассические, широко экспрессируются 
как в нормальных, так и в опухолевых клетках. 
Анализы in silico показали, что каннабиноидные 
рецепторы, как правило, не обладают значимым 
прогностическим потенциалом, однако при не- 
которых видах рака наблюдается их повышенная 
экспрессия (в основном на уровне РНК): CB1 – 
при глиоме, CB2 – при раке яичка, неклассический 
GPR119 – при раке поджелудочной железы, при  
этом последний рассматривается как благоприят- 
ный прогностический фактор, как и TRPV2 при  
меланоме. В то же время при раке почки повы- 
шенная экспрессия GPR119 соответствует неблаго- 
приятному прогнозу [16] (рис. 1). 

3. НЕКЛАССИЧЕСКИЕ КАННАБИНОИДНЫЕ  
РЕЦЕПТОРЫ

Часть эффектов каннабиноидных лигандов 
обусловлена их антиоксидантными или липо- 
фильными свойствами [17], другие же эффекты 
реализуются через рецепторы, отличные от CB1  
и CB2. Эти рецепторы часто обозначают как не- 
CB1/CB2, CB3-рецепторы или называют по ткани,  
в которой они были изначально обнаружены, 
например, эндотелиальные или гиппокампаль- 
ные каннабиноидные рецепторы. Все они объеди- 
няются в группу “неклассических каннабиноид- 
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ных рецепторов” и включают ряд мишеней, в том  
числе рецепторы GPCR, а также ионные каналы  
и ядерные рецепторы. Еще недавно классифици- 
руемые как орфанные GPCR – GPR18, GPR55,  
GPR110 и GPR119 – были отнесены к кандида- 
там в неклассические каннабиноидные рецеп- 
торы, активируемые различными эндогенными, 
растительными и синтетическими каннабинои- 
дами.

Сложность поиска эндогенных лигандов для  
сиротских рецепторов обусловлена множествен- 
ностью мишеней, с которыми они взаимодействуют, 
о чем будет упомянуто при обсуждении каждого 
конкретного GPCR.

Для того чтобы “деорфанизировать” рецепторы, 
был разработан универсальный метод для оценки 
связывания липидных рецепторов и лигандов –  
GPCR β-arrestin PathHunter™, основанный на 
взаимодействии адаптерного белка β-аррестина 
с GPCR, что приводит к его блокировке или вы- 
ключению [18].

β-Аррестин-1 и β-аррестин-2 представляют 
собой повсеместно экспрессируемые цитозоль- 
ные адаптерные белки, ингибирующие передачу 
сигналов рецепторов, связанных с G-белком 

(GPCR), путем десенситизации и интернализа- 
ции через гетеротримерные G-белки. Например, 
для анализа возможных лигандов CB1R или 
CB2R, связывающихся с β-аррестином-2, исполь- 
зовался вариант анализа, при котором активность 
β-аррестина-2 измеряется в живых клетках с по- 
мощью технологии комплементации фрагмента 
β-галактозидазы с последующей детекцией хемилю- 
минесценции продукта реакции. Используются 
клеточные линии DiscoverX PathHunter®, которые 
сверхэкспрессируют GPCR, представляющий 
интерес — в данном случае либо человеческий 
CB1R, либо CB2R – и помечены на C-конце  
небольшим донорным фрагментом β-галакто- 
зидазы, называемым ProLink™ (PK). Кроме 
того, эти клетки стабильно коэкспрессируют 
β-аррестин-2, слитый с каталитически неактив- 
ным мутантным фрагментом β-галактозидазы, т. е.  
акцептором фермента (EA). Активация CB1R 
или CB2R приводит к привлечению комплекса 
β-аррестин–EA к рецептору, помеченному PK, 
что вызывает комплементацию двух фрагментов 
фермента. В результате образуется активная 
β-галактозидаза, которую детектируют с помощью 
субстрата, дающего хемилюминесцентный про- 

Рис. 1. Структуры лигандов каннабиноидных рецепторов: 1 – анандамид (AEA); 2 – 2-AG; 3 – NAGly; 4 – RvD2; 5 – LPI,  
6 – синаптамид (DHEA); 7 – DHA-DA; 8 – N-ARA-S; 9 –NADA.
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дукт, пропорциональный активности лиганда 
изучаемого рецептора [19].

Конформационные сенсоры для GPCR – β-ар- 
рестинов, позволяющие напрямую исследовать 
взаимодействие различных лигандов с рецепто- 
рами этого типа, не исчерпывают инструментов для 
деорфанизации рецепторов. Следует упомянуть 
также доступные в настоящее время сенсоры ре- 
цепторов на основе cpGFP (circularly permutated 
enhanced GFP) [20], а также другие прямые и 
непрямые методы измерения активности GPCR 
(см., например, обзоры [21, 22]).

Первоначально аррестины были открыты как  
белки, блокирующие связь рецептора с G-белком, 
однако дальнейшие исследования значительно 
расширили спектр их взаимодействий с различ- 
ными белками и их роль в регуляции таких кле- 
точных функций, как рост и выживание клеток, 
реорганизация цитоскелета и миграция [23, 24].

Интерес к неклассическим каннабиноидным 
рецепторам продиктован не только академичес- 
кими задачами, но и их терапевтическим потен- 
циалом как мишеней для лечения социально зна- 
чимых заболеваний, таких как диабет 2-го типа,  
ожирение, рак и нейродегенерация. Далее мы  
более подробно рассмотрим рецепторы, которые 
исследователи относят к неклассическим каннаби- 
ноидным рецепторам. Основные характеристики 
этих рецепторов представлены в табл. 1.

4. GPR55

4.1. Структура и функции

Известными липидными лигандами GPR55 счи- 
таются AEA, 2-AG, Δ9-THC, CBD, abCBD, CP55940  
и HU210 [67–69], то есть вещества, относящиеся  
к классическим каннабиноидам и эндоканнаби- 
ноидам. При этом GPR55 классифицируют как 
атипичный каннабиноидный рецептор из-за от- 
личий в сигнальных механизмах и нисходящих 
каскадах по сравнению с CB1 и CB2 [70].

GPR55 демонстрирует 27–30% гомологии с  
аминокислотной последовательностью подсе- 
мейства пуринергических GPCR, включая пурино- 
рецептор P2Y5, а также орфанные рецепторы 
GPR23 и GPR35 [1–3]. Гомология с CB1 и CB2  
составляет 14 и 15%, соответственно [71]. Кроме  
того, выявлена структурная близость с рецепто- 
рами лизофосфатидной кислоты и другими пред- 
ставителями этой группы: GPR35 (37%), LPA5 
(GPR92, 30%), LPA6 (P2Y5, 30%) и LPA4 (GPR23, 
29%) [72].

С филогенетической точки зрения, GPR55 от- 
носится к δ-группе родопсиноподобных рецеп- 
торов класса A [73]. В отличие от CB1 и CB2, у 
GPR55 отсутствует классический каннабиноид-
связывающий карман [74], поэтому участки связы- 
вания лигандов, обладающих как каннабиноид- 
ной, так и GPR55-активностью, вероятно, разли- 
чаются [75, 76].

Высокий уровень транскриптов мРНК GPR55 
обнаружен в зонах головного мозга человека, 
связанных с памятью, обучением и двигательными 
функциями, таких как дорсальное полосатое тело, 
хвостатое ядро и путамен. Экспрессия также вы- 
явлена в периферических тканях: подвздошной 
кишке, яичках, селезенке, молочной железе, жи- 
ровой ткани [77–79] и в ряде эндотелиальных 
клеточных линий [19].

Значительная экспрессия белка GPR55 за- 
фиксирована в нейронах дорсальных корешков 
(DRG) большого диаметра [81]. В головном 
мозге он преимущественно экспрессирован на 
глутаматергических нейронах [82].

Активация GPR55 рядом каннабиноидов (Δ9- 
THC, метанандамидом и JWH015) вызывает по- 
вышение уровня внутриклеточного кальция в клет- 
ках HEK293 и в изолированных нейронах DRG. 
Это увеличение связано с участием белков Gq,  
G12, RhoA, актином, фосфолипазой C и высво- 
бождением кальция из IP3R-зависимых хранилищ.

Кроме того, активация GPR55 подавляет M- 
ток [81], что указывает на возможное участие этого  
рецептора в восприятии боли. У мышей с дефи- 
цитом GPR55 в моделях воспалительной и нейро- 
патической боли отсутствует механическая гипер- 
алгезия [83].

Предполагается, что GPR55 вовлечен в пере- 
дачу болевых сигналов при артрите [84], способ- 
ствует пролиферации опухолевых клеток [85] и 
потенциально может выполнять функцию нового 
проангиогенного медиатора [86].

В отличие от рецепторов CB1 и CB2, которые 
преимущественно вызывают ингибирующие эф- 
фекты, активация GPR55 сопровождается воз- 
буждающим и стимулирующим действием. Ве- 
щества AEA, 2-AG, Δ9-THC, CBD, abCBD, CP55940 
и HU210 описаны как лиганды GPR55 [67–69]. 
Антагонист/обратный агонист CB1-рецептора 
AM251 в большинстве исследований действует 
как агонист GPR55, аналогично лизофосфоли- 
пиду лизофосфатидилинозитолу (LPI).

Ответ GPR55 на эндоканнабиноиды, такие как 
анандамид (AEA), 2-AG и фитоканнабиноиды Δ9- 
THC и CBD, зависит от типа клеток и тканей. Эндо- 
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Таблица 1. Основные характеристики каннабиноидных G-белок сопряженных рецепторов

Рецептор

Расположение 
на хромосоме, 

количество  
аминокислот

Природные  
лиганды Синтетические агонисты Антагонисты Передача  

сигнала

CB1
6q14-15

472 амино- 
кислот [25]

AEA [26], 2-AG 
[27], Δ9-THC 
[27], AA-DA 

[28], Ol-DA, vi-
rodamine [26]

HU210, R-(+)-WIN55,212-2 [27]
ACPA,  noladin ester [26], AM356 

[29], AM1235, ACEA [26], 
CP50,556-1 (Levonanradol),  

CP-55,940, HU-210, JWH-007, 
JWH-018, JWH-200 (WIN 
55,225), nabilone, O-1812, 

UR-144, WIN 55,212-2, nabixi-
mols,  dronabinol [30]

SR141716,  
AM251 [26]

Gi/o [31],  
Gs [32],  
Gq [26]

CB2
1p36 [25]

360 амино- 
кислот

2-AG [33], 
Δ9-THC [27], 

Virodamine [26]

HU210, CP55,940,  
R-(+)-WIN55,212-2,  

JWH015 [27], AM1241, JWN-133, 
HU-308, JWN 015, O-1966 [34] 

SR144528,  
AM-630 [26] Gi/o [35]

GPR55
2q37 [1–3]
319 амино- 

кислот

LPI [36],  
2-AG, AEA [37], 
DHA-DA [38], 
2-NAGly [39], 

N-ARA-S  
[39, 40]

HU210, JWH015 [37], 
AbnCBD,O1602, SR141716 [39], 

AM251 [41], CP55,940 [42]

СВD, SR141716A 
[37], О1918 [40], 

CID16020046 [38]

Gα12, Gα13 
или Gαq  

[43]

GPR119
 Xp26.1

 335 амино- 
кислот [97–99]

N-Ol-DA [44], 
OEA [45], PEA, 
AEA [46], 2-OG 

[47], 5-HEPA 
[48], LPI [44], 

oleoyl-LPI [49], 
palmitoyl-LPС, 
stearoyl-LPС 

[26]

GSK1292263, APD668, APD5997, 
MBX-2982, BMS-903452, 
LEZ763, ZYG-19, PSN821,  
DS-8500a, AR231453 [50]

Не сообщается Gαs [50]

GPR18
13q32 [51]
331 амино- 
кислот [46]

RvD2, NAGly 
[39, 52–54], 

CBD, THC [42]

AM251 [42], AbnCBD [55], 
O1602 [42], ACPA [56] О1918, CBD [42] Gi/o [42]

GPR110 6p12.3 [57] DHA-DA [58] – Не сообщается Gαs [59]

GPR92 12p13.31 [60]

Фарнезил- 
пиро-фосфат 
(FPP), NAGly, 
LPA [54, 60]

– Не сообщается Gq/11, Gs,  
Gq/11 [54]

Рецепторы, филогенетически родственные каннабиноидным рецепторам

GPR3 1p35–1p36.1 
[61]

spingosine-1-
phosphate  

(S1P)? [62]

CBD, AF64394  
(обратные агонисты), DPI [61] Не сообщается  Gs [63],  

Gi [61]

GPR6
6q21–22.1
362 амино- 

кислота [61]

spingosine-
1-phosphate 
(S1P)? [62], 

NADA, NODA, 
NPDA, (обрат-
ные агонисты)

CBD (обратный агонист), 
SR144528, WIN55212-2 [64] Не сообщается Gs, Gi [61]

GPR12 13q12 [61]

spingosine-1-
phosphate?  
(S1P) [62],  

тирозол [65]

CBD (обратный агонист) [65, 66] Не сообщается  Gs, Gi [62] 
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каннабиноиды, включая AEA и виродамин, ак- 
тивируют связывание GTPγS с GPR55 при нано- 
молярных концентрациях. Передача сигнала 
осуществляется через G-белки Gq, G12 или G13 с 
активацией RhoA, фосфолипазы C, cdc42 и Rac1 
[78, 87].

Адаптивная нейробиологическая роль GPR55 
остается недостаточно изученной. Исследования 
срезов гиппокампа с использованием Ca2+-имид- 
жинга показали, что активация GPR55 временно 
увеличивает вероятность высвобождения кальция 
в отдельных синапсах CA3–CA1. Основной ме- 
ханизм включает высвобождение кальция из пре- 
синаптических запасов без участия постсинапти- 
ческих резервуаров, активируемых IP3. Гене- 
тическая делеция или фармакологическая бло- 
када GPR55 с помощью CBD устраняет этот эф- 
фект. Показано, что в слое stratum radiatum рецептор 
колокализуется с переносчиком глутамата 1 –  
белком синаптических везикул. Вероятно, лежа- 
щий в основе сигнал включает синтез фосфоли- 
пидов в пресинаптической клетке, без участия 
2-AG или AEA. Эти данные подтверждают 
участие GPR55 в регуляции синаптических це- 
пей головного мозга [88].

Также установлено, что GPR55 взаимодействует 
с Gα13, активируя малые GTP-азы и индуцируя 
осцилляции внутриклеточного кальция, что, в  
свою очередь, активирует транскрипционные 
факторы, регулирующие экспрессию генов [89]. 
В других работах описаны взаимодействия с Gα12 
и Gαq, приводящие к активации фосфолипазы C 
и высвобождению кальция из депо, управляемого 
рецептором инозитолтрифосфата. Это может спо- 
собствовать болевой чувствительности [83] или  
вызывать эндотелий-зависимую гиперполяри- 
зацию [90].

Согласно предположению Вальдек-Вейермайра 
и коллег [80], при воздействии анандамида (AEA) 
на эндотелиальные клетки EA.hy926, активация 
CB1 или GPR55 рецепторов может зависеть от 
активности интегринов – рецепторов клеточной 
поверхности, участвующих в адгезии [91].

Идентичность GPR55 и ранее предполагаемого 
эндотелиального каннабиноидного рецептора 
была опровергнута. На это указывают два ос- 
новных различия: (1) эндотелий-зависимый ва- 
зодилатирующий эффект AEA и AbnCBD не 
чувствителен к коклюшному токсину (PTX), что 
говорит в пользу участия Gi/o-белков [92, 93]. В то 
время как GPR55 активирует Gα12, Gα13 или Gαq в 
зависимости от клеточного контекста; (2) у мышей 
с делецией GPR55 сохраняется гипотензивная 
реакция на AbnCBD, что также указывает на 
наличие иного рецептора [94].

Таким образом, предполагается, что GPR55 
участвует в локализованной вазодилатации, но не 
в системной гипотонии. Возможно, в регуляции 
сосудистого тонуса участвуют одновременно 
GPR55 и GPR18 [91].

Данные исследований позволяют предполо- 
жить, что природный лиганд GPR55 – эндогенный 
липид L-α-лизофосфатидилинозитол (LPI), особен- 
но его форма с арахидоновой кислотой – 2-арахи- 
доноил-sn-глицеро-3-фосфоинозитол [18, 89, 
95, 96]. В то же время структурно родственная 
лизофосфатидовая кислота (LPA) и другие лизо- 
фосфолипиды (лизофосфатидилсерин, -холин 
и -этаноламин) не активируют GPR55 и не вы- 
зывают фосфорилирование ERK1/2 [71, 89].

В нейронах гиппокампа и DRG установлено, что 
структура жирнокислотного остатка определяет 
нейровоспалительные эффекты LPI: арахидоноил-
LPI индуцирует провоспалительные реакции, тогда 
как остальные формы – противовоспалительные 
[97].

Важно отметить, что LPI не выступает селектив- 
ным лигандом GPR55 и обладает дополнительной 
биологической активностью [98]. Еще одним 
потенциальным эндогенным лигандом выступает 
N-арахидоноилсерин, который индуцирует фос- 
форилирование ERK1/2 и Akt и влияет на функ- 
ции эндотелиальных клеток микрососудов дермы.  
Этот эффект частично подавляется при ингиби- 
ровании GPR55 с использованием siRNA [86].

Акимов с коллегами показали, что N-ацил- 
дофамины, особенно N-докозагексаеноилдофа- 
мин (DHA-DA, см. рис. 1), активируют GPR55 в 
различных линиях опухолевых клеток, вызывая 
их гибель [99].

Установлено, что экспрессия GPR55 повы- 
шена при ряде онкологических заболеваний: эндо- 
метриальном раке [100], колоректальном раке  
[101], гепатоцеллюлярной карциноме [102] и 
других формах. Это делает его потенциальным био- 
маркером агрессивности опухолей и прогности- 
ческим индикатором тяжести заболевания [103].

4.2. Сопряжение с G-белками

После активации GPR55 способен взаимо- 
действовать с несколькими типами G-белков. 
Установлено, что повышение внутриклеточной 
концентрации кальция (Ca2+) связано с актива- 
цией сигнальных путей через Gαq и Gα12, с после- 
дующим запуском каскада RhoA/PLC [81]. Кроме  
того, путь Gα12/13–RhoA–ROCK вовлечен в инду- 
цированное LPI округление клеток [104].

В других случаях передача сигналов осуществ- 
ляется преимущественно через Gα13, что также 
приводит к активации RhoA и вовлечению ма- 
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лых GTP-аз, таких как CDC42 и RAC1. Эти белки  
участвуют в регуляции клеточного цикла, дина- 
мике цитоскелета, активации киназ и контроле 
клеточного роста [89].

Активация GPR55 через Gαq может модулиро- 
ваться субъединицами Gβγ, которые способны 
ингибировать активность фосфолипазы C (PLC), 
снижая тем самым уровень внутриклеточного 
кальция [105].

4.3. Внутриклеточная передача сигнала
Внутриклеточная передача сигнала от GPR55, 

активируемого LPI, преимущественно реализуется 
через Gα13 и протекает по каскаду RhoA–ROCK. 
При этом активированный ROCK стимулирует 
PLC, что приводит к образованию инозитол-
1,4,5-трисфосфата (IP3). Последний, в свою оче- 
редь, вызывает высвобождение Ca2+ из эндо- 
плазматического ретикулума. Повышение кон- 
центрации Ca2+ активирует кальцинеурин-зави- 
симую дефосфориляцию транскрипционного фак- 
тора NFAT, способствуя его ядерной транслока- 
ции и активации транскрипции [89].

Следует отметить, что такие эндоканнабиноиды, 
как 2-AG, виродамин, PEA, каннабидиол и Abn- 
CBD, лишь незначительно увеличивают концент- 
рацию Ca2+ [81].

Дополнительно, в работе [80] показано, что 
при отсутствии внеклеточного кальция анандамид 
(AEA), активируя GPR55, взаимодействует с 
кластеризованными интегринами αvβ3 и α5β1. 
Это приводит к активации PI3K/PLC/IP3-пути и  
повышению внутриклеточной концентрации каль- 
ция. В результате активируются как ERK, так и 
NFAT, аналогично пути передачи сигнала при ак- 
тивации GPR55 лигандом LPI (см. рис. 2).

4.4. Образование гетеродимеров
GPR55 способен образовывать функциональ- 

ные гетеродимеры с другими рецепторами – CB1, 
CB2 и GPR18. Образование таких комплексов 
изменяет сигнальные свойства и физиологичес- 
кие эффекты GPR55 [105].

Прямое взаимодействие между GPR55 и CB1R  
было подтверждено в клетках HEK293, котранс- 
фицированных слитыми белками CB1R-Rluc и  
GPR55-YFP [106]. В этих условиях добавление 
специфического агониста GPR55 CID1792197 
вызывало активацию NFAT, которая подавлялась 
антагонистом CB1R SR141716. Это свидетельствует 
о перекрестном влиянии между рецепторами в 
составе гетеродимера.

Аналогично, при образовании гетеродимера 
CB2R/GPR55 установлено, что эффект LPI пол- 
ностью блокируется антагонистами CB2R – AM360 
и HU-308 [107]. Последний, сам по себе, сти- 

мулирует снижение продукции цАМФ (в при- 
сутствии форсколина) и фосфорилирование 
ERK1/2, однако при одновременном ингибиро- 
вании GPR55 эти эффекты исчезают. Более того, 
хотя стимуляция GPR55 повышает уровень фосфо- 
рилирования ERK1/2, одновременная активация 
обоих рецепторов приводит к его снижению. Это 
указывает на наличие перекрестного антагонизма 
внутри гетеромера.

5. GPR18
5. 1. Структура и функции

GPR18 – это орфанный рецептор, который де- 
монстрирует некоторое сходство с каннабиноид- 
ными рецепторами, однако его эндогенный ли- 
ганд до сих пор точно не идентифицирован, а 
функции находятся на стадии активного изучения. 
Предполагается, что GPR18 участвует в различных 
физиологических процессах, включая регуляцию 
внутриглазного давления и модуляцию иммунных 
ответов.

Ген GPR18 у человека локализован в кластере 
с генами орфанного рецептора GPR17 и рецептора 
вируса Эпштейна-Барра 2 (EBI2, также известного 
как GPR183) – ключевыми участниками иммунных 
реакций [108]. Экспрессия GPR18 обнаружена 
в семенниках, тимусе, селезенке, лейкоцитах 
периферической крови и гемопоэтических клет- 
ках [109].

Основным кандидатом в эндогенные лиганды 
GPR18 считается N-арахидоноилглицин (NAGly) –  
представитель семейства N-ациламинокислот, 
широко распространенных в нервной системе 
млекопитающих [110]. В клетках HEK293, экс- 
прессирующих GPR18, обработка NAGly при- 

Рис. 2. Схема передачи сигнала GPR55.
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водит к увеличению продукции простаноидов и  
липоксинов [111]. В то же время структурно род- 
ственный, но насыщенный аналог NAGly – N-паль- 
митоилглицин (PAL-Gly) – не взаимодействует с 
GPR18 [112].

Помимо взаимодействия с GPR18, NAGly 
действует как селективный ингибитор глицино- 
вого транспортера GlyT2 [113], усиливает глицин-
индуцированные ионные токи [114] и влияет на 
α-субъединицы глицинового рецептора – лиганд-
управляемого ионного канала [115]. В гладких 
мышцах NAGly активирует кальций-зависимые 
калиевые каналы BKCa через эндотелиально-
зависимое высвобождение оксида азота [116, 
117]. В β-клетках поджелудочной железы крыс он 
вызывает повышение внутриклеточного кальция 
и усиливает глюкозо-зависимое высвобождение 
инсулина [118].

В клетках CHO, трансфицированных GPR18, 
NAGly вызывает мобилизацию внутриклеточного 
Ca2+ и в дозозависимой манере ингибирует форс- 
колин-стимулированное накопление цАМФ с EC50  
около 20 нМ. Эти эффекты подавляются коклюш- 
ным токсином (PTX), что подтверждает сопряже- 
ние GPR18 с Gi/o-белками [119].

Функциональная активность GPR18 проявля- 
ется в миграции клеток: NAGly стимулирует 
миграцию HEK293, экспрессирующих GPR18, 
а также имитирует эффекты каннабиноидных 
лигандов AbnCBD и O-1602 в микроглиальных 
клетках BV-2. Это дало основания предполагать 
роль GPR18 как глиального каннабиноидного 
рецептора [120, 121]. В микроглии мышей и  
клетках эндометрия человека (HEC-1B) GPR18  
опосредует промиграционные ответы и стимули- 
рует фосфорилирование ERK1/2, причем эти 
эффекты существенно снижаются при подавле- 
нии GPR18 с помощью siRNA [122, 123].

Кроме того, GPR18 регулирует инфильтрацию 
нейтрофилов, созревание CD8αα γδTCR-положи- 
тельных лимфоцитов, дифференцировку макро- 
фагов и процессы эффероцитоза. Он также влияет 
на миграцию и пролиферацию эндотелиальных, 
опухолевых и эндометриальных клеток, а также 
человеческих сперматозоидов [122–125].

Однако в исследованиях с использованием 
системы рекрутирования β-аррестина Path Finder™ 
GPR18 [18] не наблюдалось ингибирования каль- 
циевых токов через N-типовые кальциевые ка- 
налы Ca(v)2.2 под действием NAGly и других аго- 
нистов GPR18, таких как анандамид и abn-CBD. 
Это позволило предположить существование не- 
канонического пути передачи сигналов GPR18 
[126].

Дальнейшие исследования дали противо- 
речивые результаты: одни авторы фиксировали 
повышение внутриклеточной концентрации каль- 

ция (pEC50 = 6.2) и быстрое, но длительное фос- 
форилирование ERK1/2 без изменения рекрути- 
рования β-аррестина под действием NAGly [127]. 
Другие исследователи не обнаруживали таких 
изменений [128]. Причины вариабельной реакции 
GPR18 на NAGly остаются неясными и требуют 
дополнительного изучения [76].

Несмотря на широкий спектр зарегистрирован- 
ных физиологических эффектов и терапевтический 
потенциал GPR18, вопрос об эндогенном лигандe 
остается открытым. Противоречивые данные по 
NAGly позволяют рассматривать его скорее как 
функционально селективный лиганд.

В исследованиях in vivo показано, что аго- 
нисты GPR18 – NAGly и Abn-CBD – вызывают 
вазодилатацию артериол сетчатки у мышей [129], 
а также оказывают гипотензивное и антиоксидант- 
ное действие в ростральном вентролатеральном 
мозговом слое (RVLM) мышей. В RVLM вы- 
явлена экспрессия GPR18 в нейронах, иммуно- 
реактивных к тирозингидроксилазе. Активация 
GPR18 (с помощью Abn-CBD) дозозависимо сни- 
жала артериальное давление и увеличивала 
частоту сердечных сокращений у крыс линии 
Спраг-Доули, тогда как блокада рецептора (O-
1918) имела обратные эффекты. Активация 
GPR18 в RVLM повышала уровни нейронального 
адипонектина (ADN) и оксида азота (NO), снижая 
при этом концентрацию активных форм кисло- 
рода (ROS), тогда как блокада рецептора увеличи- 
вала окислительный стресс. Следует отметить, что 
эти эффекты частично связаны с одновременной 
активацией CB1-рецептора в RVLM. Результаты 
демонстрируют экспрессию GPR18 в RVLM и  
предполагают его симпатоингибирующую функ- 
цию, реализующуюся через путь eNOS-NO-cGMP, 
чувствительный к O-1918 [130].

Кроме того, активация GPR18 с помощью 
NAGly или Δ9-ТГК снижает внутриглазное давле- 
ние у самцов мышей, что открывает перспективы 
для терапии глаукомы. При этом эффект Δ9-ТГК 
частично обусловлен совместным действием на 
CB1 и GPR18 рецепторы [130].

Роль GPR18 в онкологии остается недостаточно 
изученной. Есть данные о его потенциальной за- 
щитной функции при гепатоцеллюлярной кар- 
циноме и раке молочной железы. При метастазах 
меланомы человека выявлена сверхэкспрессия 
GPR18, а блокада рецептора с помощью siRNA 
усиливает апоптоз клеток. Это делает GPR18 по- 
тенциальной терапевтической мишенью для лече- 
ния меланомы – одного из наиболее агрессивных 
видов рака кожи [131].

Еще одна важная функция GPR18 – снижение 
воспалительной гипералгезии: оба эндогенных 
лиганда рецептора – NAGly и резолвин RvD2 –  
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уменьшают нейропатическую боль и механичес- 
кую аллодинию.

Анализ рекрутирования β-аррестина в сис- 
теме PathFinder™ позволил установить, что ре- 
цептором резолвина RvD2, экспрессируемым 
на лейкоцитах человека, включая полиморфно-
ядерные нейтрофилы (ПМН), моноциты и макро- 
фаги (МФ), выступает GPR18. Активация GPR18 с 
помощью RvD2 приводила к увеличению внутри- 
клеточного уровня цАМФ в макрофагах чело- 
века. При этом сверхэкспрессия GPR18 усили- 
вала индуцированный RvD2 фагоцитоз бактерий  
E. coli и эффероцитоз (поглощение апоптотичес- 
ких ПМН), тогда как нокдаун GPR18 с помощью 
siRNA значительно снижал эти эффекты.

Специфичность связывания RvD2 с реком- 
бинантным GPR18 оценивалась при Kd ~10 нМ,  
что соответствует физиологическим концентра- 
циям RvD2.

Физиологическая роль GPR18 в разрешении 
воспаления была подтверждена в ряде моделей, 
включая перитонит, пародонтит, полимикробную 
системную инфекцию [132], а также стерильные 
воспалительные состояния, такие как ишемия/
реперфузия (И/Р). В частности, в модели И/Р- 
повреждения легких и ишемии задних конеч- 
ностей у животных активация GPR18 RvD2 оказы- 
вала протективный эффект, предотвращая воспа- 
лительные повреждения. Эти эффекты устраня- 
лись при применении антагониста GPR18 – 
O-1918.

Кроме того, резолвин RvD2 обращал вспять  
нарушения реперфузии у мышей с ожирением. 
Как RvD2, так и его предшественник – докоза- 
гексаеновая кислота (DHA) – снижали уровень 
провоспалительных цитокинов в гипоталамусе, 
улучшали глюкозную толерантность и снижали 
потребление калорий на фоне повышенной 
экспрессии GPR18.

Помимо этого, Abn-CBD, полный агонист 
GPR18, снижал уровень окислительного стресса, 
восстанавливал продукцию оксида азота (NO) 
и адипонектина, а также усиливал экспрессию 
GPR18 у диабетических крыс. Эти кардиозащит- 
ные эффекты также устранялись при совместном 
применении с антагонистом GPR18 – O-1918 [133].

5.2. Сопряжение с G белками и внутриклеточная  
передача сигнала

Агонисты GPR18, такие как Δ9-тетрагидрокан- 
набинол (Δ9-THC) и абнормальный каннабидиол 
(Abn-CBD), активируют Gi-сопряженные белки, 
что приводит к увеличению внутриклеточной 
концентрации ионов кальция (Ca2+) и активации 

митоген-активируемой протеинкиназы (MAPK). 
Помимо этого, Δ9-THC также способен активи- 
ровать Gαq-белки [127].

Резолвин D2 (RvD2), другой лиганд GPR18,  
инициирует передачу сигнала через Gαs-сопряжен- 
ный путь, что подтверждается увеличением уровня 
цАМФ при стимуляции рецептора [134]. Однако 
активация Gαs, по-видимому, выступает лиганд-
специфической, поскольку она не наблюдается 
при стимуляции GPR18 такими соединениями, 
как NAGly, AM251 и O-1602 [135]. Однако эта 
активация имеет лигандную избирательность:  
при действии NAGly, AM251 или O-1602 актива- 
ции Gαs не наблюдается [135].

Стимуляция GPR18 NAGly в макрофагах ли- 
нии RAW264.7 приводит к активации Gαi-зависи- 
мого каскада, включающего фосфорилирование 
ERK1/2, p38 MAPK и JNK, а также запуск апоп- 
тоза [136].

Повышение внутриклеточной концентрации 
Ca2+ активирует несколько изоформ протеинкиназы 
C (PKC). С одной стороны, PKC активируется 
непосредственно и/или через Gαq, запуская пути 
MAPK и PI3K; с другой – димеры Gβγ стимулируют 
PI3K. В экспериментах было показано, что инги- 
биторы PKC (BI) и PI3K (вортманнин) снижают 
уровень фосфорилирования ERK1/2 при актива- 
ции GPR18, что свидетельствует о вовлеченности 
нескольких сигнальных путей [127].

Сигнальная передача через GPR18, индуци- 
рованная Δ9-THC и RvD2, включает пути cAMP/
PKA/CREB, STAT (STAT1, STAT3, STAT5), а также 
активацию Akt (PKB), p38 MAPK и ERK1/2 (см. 
рис. 3) [137].

Рис. 3. Передача сигнала GPR18.
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5.3. Гетеродимеры
Рецептор GPR18 образует гетеродимеры с CB2,  

но не с CB1, что было показано при совместной 
трансфекции в клетках HEK293 [138]. Сигнальный  
каскад, инициируемый данным гетеродимером, 
включает повышение уровня цАМФ и фосфори- 
лирование ERK1/2. Однако при одновремен- 
ной активации GPR18 и CB2 наблюдается пере- 
крестное ингибирование, что указывает на функ- 
циональное взаимодействие и модуляцию сиг- 
нальной активности обоих рецепторов.

6. GPR92
К предполагаемым низкомолекулярным ли- 

гандам GPR92 относят фарнезилпирофосфат 
(FPP) и N-арахидоноилглицин (NAGly) [77, 82]. 

6.1. Структура и функции
Рецептор GPR92 демонстрирует высокую го- 

мологию по аминокислотной последовательности 
с рецептором лизофосфатидной кислоты GPR23, 
в связи с чем изначально классифицировался как 
рецептор LPA. Экспрессия GPR92 обнаружена в 
головном мозге, селезенке, желудочно-кишечном 
тракте, тромбоцитах, легких, печени [139–141], 
а также в спинальных ганглиях дорсального ко- 
решка (DRG), что указывает на его участие в 
сенсорной нейротрансмиссии [142].

Кроме того, GPR92 вовлечен в формирование 
атеросклеротических бляшек [143], а также в ре- 
гуляцию чувствительности к питательным ве- 
ществам [144]. Предполагается, что GPR92 может 
быть перспективной терапевтической мишенью  
для облегчения дисфункции β-клеток поджелу- 
дочной железы путем ингибирования воспаления 
островков, связанного с прогрессированием са- 
харного диабета [145].

6.2. Сопряжение с G-белками и внутриклеточная  
передача сигнала

Сигнальная передача GPR92 зависит от типа 
агониста и может происходить через различные 
G-белки: Gαq/11, Gαs и Gα12/13. Активация этих 
белков инициирует соответствующие сигнальные 
каскады: IP3/Ca2+/PKC, cAMP/PKA и Rho/MAPK 
соответственно [146].

Рецепторно-опосредованные эффекты лизо- 
фосфатидной кислоты (LPA) реализуются через 
все три упомянутых пути. Фарнезилпирофосфат 
(FPP) активирует белки Gα11 и Gαs, тогда как 
NAGly – только Gαq/11. Также имеются данные о 
том, что LPA может активировать сигнальный путь 
через Gα12/13 [147, 148] и стимулировать синтез 
цАМФ посредством комплекса Gβγ-субъединиц 
(см. рис. 4) [149].

Рис. 4. Передача сигнала GPR92.

На уровне клеточных функций активация 
GPR92 с вовлечением Gαq/11 и Gα12/13 приводит 
к мобилизации внутриклеточного Ca2+ и продук- 
ции инозитолтрифосфата, способствуя регуля- 
ции ретракции нейритов и формированию стрес- 
совых волокон [149].

7. GPR110

Природный метаболит докозагексаеновой кис- 
лоты – этаноламид докозагексаеновой кислоты 
(синаптамид), родственный анандамиду, значи- 
тельно усиливает нейритогенез, синаптогенез, 
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глутаматергическую синаптическую активность 
и индуцирует нейрогенную дифференцировку. 
Установлено, что эти эффекты опосредуются 
орфанным рецептором GPR110 [150].

7.1. Структура и функции

GPR110 (также известен как ADGRF1) – орфан- 
ный рецептор из семейства адгезионных рецеп- 
торов, сопряженных с G-белками (aGPCR). Он  
имеет молекулярную массу около 100 кДа, содер- 
жит семь трансмембранных спиралей и несколько 
участков N-связанного гликозилирования. Экс- 
прессия GPR110 наиболее выражена в мозге плода 
и существенно снижается после рождения.

Характерная черта рецепторов семейства  
aGPCR – наличие GAIN-домена (Autoproteolysis-
Inducing domain), расположенного непосредст- 
венно перед трансмембранной областью. Этот 
домен участвует в автопротеолизе, в результате 
чего формируется короткий стеблевой (stalk) пеп- 
тид, действующий как привязанный внутренний 
агонист. Он входит в лиганд-связывающий карман 
и активирует рецептор – механизм, известный как 
“самоактивация привязанным агонистом”.

С помощью криоэлектронной микроскопии 
было показано, что GPR110 способен взаимо- 
действовать со всеми четырьмя основными ти- 
пами G-белков: Gαs, Gαi, Gαq и Gα12/13. Кроме того, 
получены прямые доказательства, что GPR110 
обладает конститутивной активностью за счет 
собственного стеблевого пептида.

Из всех протестированных этаноламидов 
жирных кислот только синаптамид значимо из- 
менял связывание G1 с GPR110, что указывает 
на его высокую специфичность как лиганда. В 
клетках HEK293, сверхэкспрессирующих GPR110, 
синаптамид вызывал дозозависимое повыше- 
ние концентрации цАМФ, что свидетельствует о  
предпочтительном сопряжении рецептора с Gαs.  
Это подтверждено отсутствием ответа через Gαi  
и Gαq, а также усилением связывания радиоак- 
тивно меченого GTP (γ35S) после стимуляции 
синаптамидом [150].

Механизм активации синаптамидом связан со  
связыванием синаптамида с интерфейсом суб- 
доменов GAIN-домена GPR110. При этом ключе- 
вые – аминокислотные остатки Gln511, Asn512 и  
Tyr513, участие которых вызывает конформацион- 
ные изменения в области трансмембранного до- 
мена TM6 и запускает внутриклеточную передачу 
сигнала [151].

Синаптамид в концентрации 10 нM в зависи- 
мости от времени увеличивал продукцию cAMP 
как в кортикальных нейронах, так и в NSCs, а также 
значительно повышал фосфорилирование CREB и 
CRE транскрипционную активность. Синаптамид 
стимулировал рост нейритов, экспрессию синапти- 
ческих белков, а также синаптогенез, оцененный  
по перекрывающимся точкам пре- и постсинапти- 
ческих белков – синапсина 1 и PSD95 (Synapsin1/ 
PSD95) – в кортикальных нейронах, и нейро- 
генную дифференциацию NSCs. Эти результаты 
показывают, что эффекты синаптамида опосре- 
дованы через cAMP-сигнализацию и что вовлечены 
не-Gαi-связанные GPCR [152].

Активация GPR110 синаптамидом и его ста- 
бильным аналогом диметилсинаптамидом частич- 
но восстанавливала зрительную функцию после 
повреждения зрительного нерва у взрослых мышей, 
значительно снижала аксональную дегенерацию и 
улучшала аксональную целостность и зрительную 
функцию у мышей дикого типа, но не у мышей 
с нокаутом gpr110. В травмированной сетчатке 
мышей, обработанной лигандами GPR110, также 
наблюдалось значительное снижение потерь 
ганглиозных клеток сетчатки [153].

Нарушение гематоэнцефалического барьера 
(ГЭБ) и снижение фосфорилирования окклю- 
дина в Y285 в мозге мышей с удаленным GPR110 
указывают на важную роль взаимодействия 
GPR110 с окклюдином в функционировании ГЭБ. 
Фосфорилирование Y285 увеличивалось при 
активации GPR110 лигандом [154].

Терапевтическую значимость GPR110 еще 
предстоит выяснить, однако установлено, что 
GPR110 – единственный сверхэкспрессируе- 
мый GPCR в популяциях клеток рака молочной 
железы BT474, SKBR3, HCC1569, MDA-MB-361, 
AU565 и/или HCC202, а также в подтипе BC HER2+ 
клеток в опухолях пациентов, резистентных к 
терапии Aldefur+ и анти-HER2. Обнаружено, что 
нокдаун GPR110 значительно снижает рост и 
миграцию/инвазию клеток, что свидетельствует 
о потенциальной роли GPR110 в онкогенности 
и диссеминации опухолевых клеток при HER2+ 
РМЖ [155].

7.2. Сопряжение с G-белками

GPR110 сопрягается как с белками Gαs, так и с  
Gαq, повышая уровень цАМФ и IP3 при сверх- 
экспрессии [156]. По данным [157], Gαq выступает 
в качестве предпочтительного партнера.
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7.3. Передача сигнала внутри клетки

Взаимодействие GPR110 с Gαs отвечает за его 
противоопухолевые эффекты [156]. В частности, 
GPR110 способствует прогрессированию рака, 
регулируя EMT и свойства раковых стволовых 
клеток (CSC). Важно отметить, что повышенный 
уровень GPR110 коррелирует с активацией сиг- 
нального пути KRAS, а также стимулирует образо- 
вание фосфо-MEK1/2 и фосфо-ERK1/2 [158]. С 
другой стороны, подавление активности GPR110 
запускало повышенную активацию пути IL-6/
STAT3, который замедлял гепатокарциногенез, 
вызванный хроническим повреждением печени 
[159].

В неонкологическом контексте GPR110 и си- 
наптамид обеспечивают нормальное функцио- 
нирование нервной системы. Так, нейротрофи- 
ческие и нейропротекторные эффекты синапта- 
мида, такие как нейрогенез, рост нейритов, си- 
наптогенез и противовоспалительные эффекты, 
опосредованы его связыванием с GPR110, акти- 
вацией пути cAMP/PKA и стимуляцией фосфо- 
рилирования PKC и CREB. Синаптамид эффек- 
тивно индуцирует выработку цАМФ с EC50 в  
диапазоне низких нМ в культивируемых корти- 
кальных нейронах, нервных стволовых клетках и 
микроглии [160, 161]. В культивируемой микро- 
глии синаптамид повышал уровень цАМФ и 
ингибировал экспрессию индуцированных LPS 
провоспалительных цитокинов посредством 
подавления транслокации субъединицы NF-κB 
RelA в ядро (рис. 5) [162].

8. GPR119

Ни один из “классических” каннабиноидных 
лигандов, таких как Δ9-ТГК, не действует через  
GPR119, в отличие от GPR18 и GPR55. Эндоген- 
ные ацилэтаноламиды, структурные аналоги анан- 
дамида (AEA), рассматриваются как кандидаты 
на роль агонистов этого рецептора.

8.1. Структура и функции

Орфанный рецептор класса А GPR119 был об- 
наружен в базе данных генома человека и отне- 
сен к кластеру рецепторов, включающему кан- 
набиноидные рецепторы.

GPR119 обнаружен в островках поджелудочной 
железы грызунов [163], в L-клетках кишечника, 
ответственных за секрецию глюкагоноподобного 
пептида 1 (GLP1) [164, 165], в скелетных мышцах 
[166] и печени [76, 167], а также в отдельной 
популяции клеток коры головного мозга, желудка 
и в эндокринных клетках бронхиального тракта, 
желудочно-кишечного тракта и простаты. GPR119 
сильно экспрессирован в аденокарциномах, ти- 
пичных и атипичных карциноидах легких и мелко- 
клеточном раке легких, в меньшей степени – в  
крупноклеточных нейроэндокринных карциномах  
легких, медуллярных карциномах щитовидной 
железы, аденомах паращитовидных желез, 
феохромоцитомах и субпопуляции нейроэндо- 
кринных новообразований поджелудочной же- 
лезы. В опухолях легких наблюдалась отрицатель- 
ная корреляция с экспрессией маркера пролифе- 
рации Ki-67 и положительная взаимосвязь с 
выживаемостью пациентов, что делает GPR119 
подходящей диагностической или терапевтической 
мишенью [168]. GPR119 также играет особую роль 
в циркадианной регуляции [169].

Связывание Gαs с GPR119 активирует аденил- 
атциклазу и увеличивает внутриклеточное на- 
копление цАМФ [170], что приводит к усиле- 
нию глюкозозависимой секреции инсулина 
β-клетками поджелудочной железы и увеличению 
высвобождения кишечных пептидов GLP-1 
(глюкагоноподобного пептида 1) [164, 165, 171–
174], GIP (глюкозозависимого инсулинотропного 
пептида) и PYY (полипептида YY). Участие 
GPR119 в контроле энергетического баланса и мета- 
болического гомеостаза позволило предложить 
новую терапевтическую стратегию при диабете 
на основе агонистов рецептора, поскольку они:  
(1) снижают уровень глюкозы в крови без гипо- 
гликемии; (2) способствуют замедлению прогрес- 
сирования диабета и (3) уменьшают потребление 
пищи и массу тела [170]. Рис. 5. Передача сигнала GPR110.
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Тесная филогенетическая близость GPR119 
и каннабиноидного рецептора предопределила 
область поиска потенциальных лигандов GPR119 
среди веществ, родственных эндоканнабиноидам. 
Было показано, что эндогенные ацилэтаноламиды, 
структурные аналоги анандамида (AEA), индуци- 
руют флуоресцентный сигнал в клетках дрожжей, 
трансфицированных GPR119 человека или мыши. 
N-Олеоилэтаноламин (ОЭА) – мононенасыщен- 
ный аналог эндоканнабиноида AEA – активирует 
GPR119 [165, 175–178] и стимулирует выработку 
цАМФ в клетках, экспрессирующих нативные 
или рекомбинантные рецепторы GPR119, тогда 
как клетки без GPR119 на OEA не реагируют. 
Другие мишени OEA – ядерный рецептор PPARα, 
контролирующий насыщение и массу тела [179,  
180], нейропротекцию, чередование сна и бодрство- 
вания [181], поведение, вызванное кокаином [182]  
и алкоголем [183], атеросклероз [184], а также ванил- 
лоидный рецептор TRPV1, где OEA выступает в 
роли агониста [185], и деацетилаза гистонов Sirt6 
[186].

Примечательно, что 2-олеоилглицерин, моно- 
ненасыщенный аналог 2-AG, также был иденти- 
фицирован как агонист GPR119 [187], который 
сигнализирует о секреции GLP-1 в кишечнике 
человека. Третьим эндогенным активатором 
GPR119 оказался олеоиллизофосфатидилхолин 
(OLPC). Его аналоги – пальмитоил- и стеароил- 
лизофосфатидилхолин (PLPC, SLPC, соответствен- 
но) – активируют GPR119 в диапазоне наномоляр- 
ных и низких микромолярных концентраций 
[163]. Все они увеличивают уровень цАМФ 
через активацию аденилатциклазы и активируют 
протеинкиназу А (PKA), что свидетельствует о 
связывании рецептора GPR119 с белком Gs [163, 
165, 171, 175].

Имеются также доказательства вовлечения АТФ- 
чувствительных калиевых (K-АТФ) и потенциал-
зависимых Ca2+ (Ca_v) каналов в ответы, опосредо- 
ванные GPR119 [188], а также показана высокая 
конститутивная активность рецепторов GPR119, 
независимо от активации лигандами [171, 189].  
Кокс и соавторы [190] также показали, что пептид YY –  
критический фактор реакции слизистой оболочки 
желудочно-кишечного тракта, опосредованной 
рецептором GPR119. Позднее N-олеоилдофамин и 
5-гидроксиэйкозапентаеновая кислота рассматри- 
вались как эндогенные агонисты GPR119 [171, 178, 
191], но их низкие физиологические концентрации 
ставят это предположение под сомнение [189, 192]. 
Тем не менее, наиболее сильными природными ли- 
гандами, о которых сообщалось, были OEA и N- 
олеоилдофамин.

Увеличение экспрессии GPR119 в кишечнике 
человека как ответ на острое ожирение [193] ука- 

зывает на потенциальное участие рецептора в 
метаболических нарушениях при ожирении и 
диабете 2 типа. Действительно, синтетические 
агонисты GPR119 показали многообещающие 
результаты во второй фазе клинических испыта- 
ний при диабете 2 типа. Альтернативное фарма- 
кологическое применение мишени GPR119 – лече- 
ние неалкогольной жировой болезни печени, 
которая в настоящее время плохо поддается те- 
рапии [76]. Однако использование синтетических 
агонистов GPR119 в качестве селективных ли- 
гандов этого рецептора оказалось невозможным, 
поскольку они могут также действовать через 
GPR119-независимый путь [188]. Установлено, 
что OEA способен также активировать PPARα, 
что было убедительно показано на мышах с 
дефицитом PPARα [179].

8.2. Сопряжение с G-белками  
и внутриклеточная передача сигнала

Передача сигналов GPR119 осуществляется че- 
рез Gαs, что приводит к внутриклеточному увели- 
чению цАМФ [165, 194]. Кроме того, сообщалось 
о взаимодействии рецептора с Gαq и Gαi, при ак- 
тивации которых вторичным мессенджером слу- 
жит IP3 [194].

Следует отметить, что, например, в случае 
олеоилэтаноламида передача сигналов через раз- 
личные G-белки комбинируется: 30–70% управ- 
ляется Gαs, 10–30% – Gαq и 1–10% – Gαi. Вся 
передача сигналов в конечном итоге приводит к 
увеличению концентрации Ca2+ в цитоплазме, что 
вызывает слияние инсулинсодержащих везикул с 
плазматической мембраной (рис. 6) [194].

Рис. 6. Передача сигнала GPR119.
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9. РЕЦЕПТОРЫ, ФИЛОГЕНЕТИЧЕСКИ  
РОДСТВЕННЫЕ КАННАБИНОИДНЫМ  

РЕЦЕПТОРАМ

Еще несколько орфанных GPCR (GPR3, GPR6, 
GPR12), благодаря тесной филогенетической 
близости с существующими CB, рассматриваются 
как кандидаты в группу каннабиноидных рецеп- 
торов, и ведется поиск их эндогенных лигандов. 
Рецепторы GPR3, GPR6 и GPR12 филогенетически 
наиболее тесно связаны с каннабиноидными ре- 
цепторами, а также с рецепторами сфингозин-1-
фосфата, рецептором лизофосфатидной кислоты, 
меланокортиновым рецептором и входят в состав 
так называемого MECA-кластера [219] (табл. 1).

В настоящее время кандидат в природные ли- 
ганды этих рецепторов – липид S1P (сфингозин-1-
фосфат), однако окончательного ответа на вопрос 
об истинном лиганде еще нет. Физиологические 
проявления этих рецепторов весьма обширны: пато- 
логии нейродегенеративных заболеваний [195], 
метаболические нарушения, регуляция роста ней- 
ритов, созревание ооцитов.

GPR3 и GPR12 играют важную роль в развитии 
ожирения в связи со снижением метаболизма 
[196, 197]. GPR3 и GPR12 участвуют в созревании 
ооцитов у многих видов животных, включая чело- 

века [198, 199]. Вместе с GPR6 и GPR12 они имеют  
решающее значение для роста нейритов из-за 
своей конститутивной активности по производству 
цАМФ [200].

Анализ рекрутирования β-аррестина-2 и на- 
копления цАМФ показал, что CBD выступает 
в роли обратного агониста близкородственных 
орфанных рецепторов GPR3, GPR6 и GPR12, ко- 
торые конститутивно активны и способны пере- 
давать сигналы через Gs-белок, Gi-белок и через ме- 
ханизмы, не опосредованные G-белками (рис. 7)  
[201]. Эндоканнабиноиды 2-AG и AEA, а также 
ноладиновый эфир и виродамин не влияли на рек- 
рутирование β-аррестина-2 в клетках, экспрес- 
сирующих GPR3, GPR6 и GPR12; ни один из 
протестированных эндоканнабиноидов (до кон- 
центрации 100 мкМ) не изменял накопление 
цАМФ [198], что исключает эти соединения из 
предполагаемых лигандов.

Предположение, что сфингозин-1-фосфат высту- 
пает как агонист GPR3, GPR6 и GPR12 [201], было 
оспорено другими исследователями, которые не 
смогли воспроизвести результаты с помощью этого  
лиганда. Также не подтвердилось, что дигидросфин- 
гозин-1-фосфат служит агонистом GPR3 (рис. 7) 
[198, 202].

Рис. 7. Передача сигнала рецепторами GPR3, GPR6 и GPR12.

10. GPR3

10.1. Структура и функции

Рецептор GPR3 был идентифицирован как ме- 
диатор продукции амилоидного пептида Aβ при 
болезни Альцгеймера (БА) [198, 202, 203].

мРНК GPR3 экспрессируется в глазах, легких, 
почках, печени, семенниках и яичниках, а также 
в других тканях. В головном мозге мРНК GPR3 
обильно экспрессируется в нейронах различных 
областей: коре, таламусе, гипоталамусе, миндале- 
видном теле, гиппокампе, гипофизе и мозжечке. 
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Обнаружена повышенная экспрессия белка GPR3 
в нейронах посмертных срезов ткани головного 
мозга людей с БА.

Хлорид дифенилендиодония (DPI) [204], ко- 
торый стимулировал многочисленные сигнальные 
пути, включая мобилизацию Ca2+, накопление 
цАМФ, рекрутирование β-аррестина-2 и интер- 
нализацию рецепторов в клетках HEK293, ста- 
бильно экспрессирующих GPR3, рассматривается 
как один из предполагаемых агонистов GPR3. Для  
GPR3 также выявлен обратный агонист – AF64394,  
снижавший уровень накопления цАМФ. Приме- 
чательно, что помимо мономерной формы, у GPR3 
обнаружен функциональный димер – особенность, 
редко встречающаяся у GPCR класса А. Более 
того, олигомеризация, по-видимому, связана с 
уникальным механизмом аутоингибирования, 
включающим внутриклеточные сигнальные петли, 
которые могут регулировать передачу сигнала 
через GPR3 [205].

10.2. Сопряжение с G-белками

GPR3 был впервые описан как конститутив- 
ный активатор аденилилциклазы в исследовании 
Эггерикса в 1995 г. [206]. В нем показали, что GPR3  
активирует аденилатциклазу, измеряемую по на- 
коплению цАМФ; уровень активации сопоставим 
с активацией других лиганд-активируемых рецеп- 
торов, связанных с Gαs. Позднее [207] было уста- 
новлено, что конститутивная активность обуслов- 
лена N-концом белка.

По данным [201], в присутствии сфингозин-1-
фосфата (S1P) GPR3 способен сигнализировать 
через Gαi, вызывая высвобождение Ca2+ из тапсига- 
ргин-чувствительных запасов эндоплазматичес- 
кого ретикулума, а также через Gαs, что приво- 
дит к умеренному увеличению активности аденил- 
атциклазы. При добавлении PTX, ингибирующего 
Gαi, активность аденилатциклазы повышается. 
Удаление липидоподобных веществ из среды 
инкубации снижало конститутивную активность, 
что указывает на частичную зависимость актив- 
ности GPR3 от неизвестных липидных факторов.

Активация GPR3 S1P, сопровождающаяся на- 
коплением цАМФ, была также зарегистрирована 
у свиней [208] и грызунов [199]. Вместе с тем, ис- 
следование [204] не подтвердило эффекты S1P, но  
подтвердило конститутивную активность Gαs.

10.3. Внутриклеточная передача сигнала

Танака [209] продемонстрировал, что GPR3  
активирует передачу сигналов через ERK1/2 и про- 
теинкиназу В (Akt), обеспечивая антиапоптоти- 

ческий эффект. В работе Huang et al., 2022 [145] по- 
казана активация ERK и JNK, а согласно [210],  
GPR3 стимулировал рост нейритов и формирова- 
ние нейрональной полярности через PI3-киназо- 
зависимый путь.

Дополнительно, в работе [211] показано, что 
экспрессия GPR3 в плазматической мембране 
увеличивает уровни PKA, при этом GPR3 транс- 
портируется вдоль нейрита, способствуя локаль- 
ной активации этой киназы.

Фармакологическое ингибирование Gαs и Gαi,  
но не Gαq, значительно снижало уровни фосфори- 
лирования ERK [212], что свидетельствует о сопря- 
жении GPR3 с Gαs и Gαi для запуска активации 
ERK.

11. GPR6

11.1. Структура и функции

Рецептор GPR6 участвует в C1q-опосредованной 
нейропротекции против Aβ-индуцированной 
нейротоксичности на мышиной модели болезни 
Альцгеймера [213]. При болезни Паркинсона (БП) 
снижение экспрессии GPR6 повышало уровень 
дофамина и уменьшало цАМФ в тканях полосатого 
тела, что приводило к снижению непроизвольных 
движений, характерных для данного заболевания. 
Поэтому снижение конститутивной активности 
GPR6 рассматривается как потенциальный тера- 
певтический подход к лечению БП [214]. GPR3 
облегчает нейропатическую боль [215] и участвует 
в формировании привыкания к кокаину [216].

GPR6 относится к орфанным рецепторам класса 
А, связан с Gαs и экспрессируется в полосатом 
теле, лобной коре, ретросплениальной коре, гип- 
покампе, миндалевидном теле и гипоталамусе че- 
ловека. Рецептор конститутивно активирует аденил- 
атциклазу, обеспечивая высокий уровень цАМФ.

Некоторые антагонисты каннабиноидов, вклю- 
чая SR144528, и агонист WIN55212-2 продемонстри- 
ровали активность на GPR6. Недавно выявлено, что 
N-ациламиды, такие как N-арахидоноилдофамин, 
N-олеоилдофамин и N-пальмитоилдофамин, про- 
являют обратный агонизм к GPR6 в микромоляр- 
ном диапазоне концентраций [217].

11.2. Сопряжение с G-белками

GPR6 конститутивно активирует Gαs, что при- 
водит к повышению внутриклеточного уровня 
цАМФ [211, 217]. Кроме того, конститутивная 
активность протекает и через конкурирующий 
сигнальный путь Gαi [201].
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11.3. Внутриклеточная передача сигнала

Активация GPR6 запускает сигнальные пути,  
сходные с таковыми у GPR3. В частности, стиму- 
ляция GPR6 сфингозин-1-фосфатом вызывает вы- 
свобождение Ca2+ из внутриклеточных запасов 
через путь, опосредованный сфингозинкиназой 
[201, 218]. Активация сфингозинкиназы сопро- 
вождается повышением активности MAPK при 
окислительном стрессе [200]. Игнатов [218] по- 
казал, что GPR6 ингибирует апоптотическую гибель  
клеток посредством механизма, основанного на 
активации сфингозинкиназы и фосфорилирова- 
нии ERK1/2.

12. GPR12

12.1. Структура и функции
Рецептор GPR12 относится к орфанным рецеп- 

торам, сходным по последовательности с каннаби- 
ноидными, и участвует в различных физиологи- 
ческих процессах [219]. Эндогенный лиганд пока 
не установлен, но в качестве потенциальных рас- 
сматриваются сфинголипиды, например сфин- 
гозинфосфорилхолин [220]. В экспериментах на 
клетках CHO и HEK293, трансфицированных ге- 
ном GPR12, был выявлен тирозол из Streptomyces 
sp., способствующий значительному увеличению 
уровня цАМФ [221].

GPR12 вовлечен в развитие нейронов, регуля- 
цию рака и рассматривается как потенциальная 
молекулярная мишень для каннабидиола (CBD) 
[222]. Однако некоторые исследователи считают, 
что GPR12 не удовлетворяет современным кри- 
териям каннабиноидного рецептора [66].

мРНК GPR12 обнаружена в гипофизе, нейронах 
лобной коры, грушевидной коры, таламуса, гипо- 
таламуса, гиппокампа, миндалевидного тела и  
обонятельной луковицы. На периферии – в се- 
менниках и ооцитах [198].

12.2. Сопряжение с G-белками

GPR12 характеризуется как конститутивной сиг- 
нализацией, так и сигнализацией, индуцированной 
агонистом. Конститутивная активность проходит 
через Gαs и конкурирующий путь Gαi, приводя к 
активации или ингибированию аденилатциклазы и 
высвобождению кальция из эндоплазматического 
ретикулума [200, 201, 223]. Стимуляция S1P запус- 
кает высвобождение Ca2+ через путь, опосредован- 
ный сфингозинкиназой [201, 223], которая акти- 
вируется посредством Gαi-сигнального пути [224].

12.3. Внутриклеточная передача сигнала

GPR12 участвует в клеточной пролиферации и 
выживании, при этом активация ERK1/2 вовлечена 

в процессы, опосредуемые GPR12 [225]. В клетках 
PC12 GPR12 стимулирует сигнальный путь ERK1/2 
и увеличивает экспрессию Bcl-2, Bcl-xl и SYP [226]. 
Сверхэкспрессия рецептора повышает уровни 
Ki67 и Bcl-2 [227]. Каннабидиол действует как 
обратный агонист GPR12, снижая конститутивную 
выработку цАМФ, осуществляемую через путь 
Gαs [228].

Кроме того, GPR12 снимает ингибирование ре- 
генерации аксонов за счет Gαs/цАМФ/PKA-за- 
висимого ингибирования малой ГТФазы RhoA, ко- 
торая, в свою очередь, блокирует действие миелин- 
ассоциированного гликопротеина [228].

13. ДРУГИЕ ОРФАННЫЕ GPCR

Среди многих орфанных рецепторов примерно 
120 типов пока не имеют установленных природ- 
ных лигандов [229]. Классификация этих рецеп- 
торов в те или иные семейства основывается либо 
на филогенетической близости, либо на данных о 
лигандах, известных для родственных рецепторов. 
По второму критерию к потенциальным каннаби- 
ноидным рецепторам относят, в частности, GPR52.

GPR52 – высокоэволюционно консервативный 
орфанный рецептор, связанный с Gαs/olf белками, 
с менее чем 20% гомологии последовательностей 
по сравнению с неклассическими GPCR [229]. 
Этот рецептор экспрессируется в полосатом теле,  
преимущественно на средних шипиковых нейро- 
нах, которые экспрессируют дофаминовые рецеп- 
торы D2, а также на кортикальных пирамидальных 
нейронах с дофаминовыми рецепторами D1.

GPR52 – рецептор семейства А, связанный с 
Gs, который конститутивно повышает уровень 
внутриклеточного цАМФ [230]. Он рассматрива- 
ется как перспективная терапевтическая мишень 
для лечения различных заболеваний центральной 
нервной системы, включая шизофрению, рас- 
стройства, вызванные употреблением стимуля- 
торов, болезнь Хантингтона и другие психиатри- 
ческие и неврологические расстройства [229].

Скрининг известных лигандов GPCR выявил, 
что каннабидиол (CBD) и O-1918 выступают как  
обратные агонисты GPR52 [230]. Однако для 
окончательной классификации рецептора и опре- 
деления его эндогенного лиганда необходимы даль- 
нейшие исследования.

14. ЗАКЛЮЧЕНИЕ

Настоящий обзор систематизирует современ- 
ные представления о неклассических каннаби- 
ноидных рецепторах (GPR55, GPR18, GPR119 и др.),  
углубляя понимание их роли в эндоканнабиноид- 
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ной системе (ЭКС) и за ее пределами. Можно 
сформулировать следующие основные положения 
об их работе: (1) механизмы сигнализации и функ- 
циональная пластичность – неклассические кан- 
набиноидные рецепторы демонстрируют мульти- 
валентность в передаче сигналов, взаимодействуя 
с различными G-белками (Gαq, Gαs, Gαi/o, Gα12/13). 
Например, активация GPR55 через Gαq/13 запускает 
каскады RhoA/PLC и NFAT, что коррелирует с ре- 
гуляцией боли и ангиогенеза, тогда как GPR119, 
связываясь с Gαs, усиливает секрецию инсулина и 
GLP-1, открывая перспективы для лечения мета- 
болических нарушений; (2) контекстная зависи- 
мость их активности (тканевая специфика, наличие 
корецепторов) объясняет противоречивые эффекты 
лигандов. Так, LPI через GPR55 стимулирует про- 
лиферацию раковых клеток, но в нейронах модули- 
рует синаптическую пластичность; (3) гетеродиме- 
ризация как регуляторный механизм –способность 
формировать гетерокомплексы (например, GPR55- 
CB1/2, GPR18-CB2) модифицирует фармакологи- 
ческий ответ. Это явление, подтвержденное ме- 
тодами BRET и siRNA, подчеркивает необходимость 
учитывать межрецепторные взаимодействия при  
разработке таргетных препаратов; (4) физиологи- 
ческая интеграция липидных сигналов – неклас- 
сические каннабиноидные рецепторы выступают 
сенсорами эндогенных липидов (LPI, NAGly, синап- 
тамид), адаптируя клеточный ответ к локальным 
условиям. Например, GPR110 опосредует нейро- 
протекторные эффекты синаптамида через акти- 
вацию cAMP/PKA в нейронах, а GPR92 регулирует 
нутритивный гомеостаз в кишечнике.

Для недавно открытых GPR3, GPR6 и GPR12 
наблюдается конститутивная активность, которая 
может меняться под действием лиганда. Поскольку 
лигандами рассматриваемых рецепторов служат 
липиды, которые, как правило, синтезируются 
и высвобождаются по необходимости или могут 
постоянно присутствовать в межклеточном про- 
странстве, можно предположить, что функция 
неклассических каннабиноидных рецепторов 
заключается в адаптации клетки к текущему кон- 
тексту ткани путем интеграции разных сигналов, 
а не в быстрой реакции на возникающие стимулы.  
Однако данная гипотеза нуждается в дополни- 
тельной проверке.

Существенными пробелами в знаниях о неклас- 
сических каннабиноидных рецепторах представ- 
ляются следующие: (1) недостаток данных о ли- 
гандной селективности (например, перекрестная 
активация GPR18 NAGly и RvD2); (2) ограниченное 
понимание внутриклеточной динамики сигналь- 
ных каскадов, особенно при гетеродимеризации;  

(3) необходимость тканеспецифичных исследо- 
ваний для преодоления противоречий in vitro/ 
in vivo (например, роль GPR55 в вазодилатации).

Перспективным направлением остается разра- 
ботка селективных модуляторов, учитывающих 
контекстную активность рецепторов, и применение 
технологий (например, крио-ЭМ для GPR110) 
для детализации структурных основ лиганд-ре- 
цепторных взаимодействий.

Таким образом, неклассические каннабиноид- 
ные рецепторы представляют динамичные ком- 
поненты ЭКС, чья многогранная роль в физиологии 
и патологии требует дальнейшего изучения для 
реализации их потенциала в персонализированной 
медицине.
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The objective of this review is to summarize current understanding of non-classical cannabinoid receptors, 
their signaling mechanisms, and roles in physiological and pathological processes. Non-classical recep-
tors (GPR55, GPR18, GPR119, etc.) demonstrate tissue-specific expression, interaction with multiple G 
proteins, and ligand-dependent activation of signaling pathways. GPR55 is involved in the regulation of 
pain, angiogenesis, and oncogenesis; GPR18 modulates inflammation and metabolism; GPR119 is prom-
ising for diabetes therapy. Their ability to heterodimerize has been identified, which complicates their 
pharmacological profile. Non-classical cannabinoid receptors represent promising targets for the treatment 
of socially significant diseases (cancer, diabetes, neurodegeneration). However, their context-dependent 
activity requires in-depth study to develop selective drugs.
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