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ВВЕДЕНИЕ
Рак продолжает оставаться одной из лиди- 

рующих причин смертности во всем мире, пред- 
ставляя собой серьезную проблему для общест- 
венного здравоохранения [1]. Радикальное уда- 

ление опухолевых образований, наряду с химио-  
и лучевой терапией, – ведущие методы лечения 
рака на сегодняшний день. Однако стоит отме- 
тить, что для поздних стадий солидных опухо- 
лей применение химио- и лучевой терапии де- 
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При лечении раковых заболеваний комбинированное действие фототермической и фотодинамической 
терапии обладает уникальными преимуществами по сравнению с каждым из этих методов в 
отдельности. В данном исследовании разработана многофункциональная адресная наноплатформа 
для одновременной комбинированной фототермической и фотодинамической терапии при 
облучении инфракрасным лазером 808 нм. Разработанная система представляет собой липосомы 
размером ~140 нм, специфичные к опухоль-ассоциированному антигену HER2 и загруженные 
гептаметинцианиновым красителем ближнего инфракрасного диапазона IR780. Тропность 
липосом к HER2 определяется HER2-специфичным скаффолдным белком DARPin_9-29 на 
внешней поверхности липосом. Установлено, что, находясь в составе липосом, IR780 сохраняет 
фототермические и фотодинамические свойства: под действием облучения в растворе липосом, 
загруженных IR780, происходит быстрое повышение температуры раствора (до 60°С за 60 с), 
а также идет выработка активных форм кислорода. В опытах in vitro установлено, что HER2-
специфичные липосомы, содержащие IR780, обладают фотоиндуцированной цитотоксичностью в 
отношении HER2-суперэкспрессирующих клеток, вызывая гибель 50% клеточной популяции при 
концентрации 2.85 мкМ. Результаты исследования позволяют заключить, что HER2-специфичные 
липосомы, содержащие IR780, обладают отличными таргетными характеристиками, а IR780 
может использоваться в качестве действующего вещества для одновременной фототермической и 
фотодинамической терапии. 
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монстрирует ограниченный успех, с общими 
показателями ответа 20–30% [2]. Кроме того, при 
химиотерапии у 70–80% пациентов проявляются 
значительные побочные эффекты (тошнота, вы- 
падение волос, иммуносупрессия, быстро разви- 
вающаяся лекарственная устойчивость) [3, 4], и  
у 5–10% пациентов, получавших лучевую тера- 
пию, развиваются вторичные онкологические 
заболевания [5]. 

Эти проблемы подчеркивают настоятельную 
необходимость в создании инновационных ле- 
карственных формуляций и новых подходов, 
призванных обеспечить селективность лекарств  
по отношению к раковым клеткам, минимизиро- 
вать системную токсичность и, по возможности, 
обеспечить синергизм (многофакторность) воз- 
действия. 

Фототермическая (ФТТ) и фотодинамическая 
терапия (ФТД) – многообещающие методы ле- 
чения рака, которые, используя свет ближнего 
инфракрасного диапазона (700–1000 нм), поз- 
воляют избирательно устранять очаги поражения 
с помощью фотореактивных соединений, спо- 
собных преобразовывать свет в тепло (ФТТ) и 
генерировать активные формы кислорода (ФДТ) 
[6]. Селективность фототоксического воздействия 
на опухолевый очаг определяется локальным 
облучением клеток-мишеней [7–10]. Как пра- 
вило, фототермические и фотодинамические 
агенты могут использоваться в сочетанной ФТТ/ 
ФДТ только при использовании лазеров с раз- 
ными длинами волн из-за несовпадения опти- 
ческих характеристик. Для сочетанной ФТТ/
ФДТ в условиях одноволнового облучения описа- 
ны системы на основе полимерных структур, 
содержащих золотые наночастицы и фото- 
сенсибилизатор хлорин е6 (Се6) [11], углеродные 
нанотрубки в комплексе с фталоцианином цинка  
[12], модифицированный полиэтиленгликолем 
оксид графена в комплексе с Се6 [13], самособи- 
рающихся частиц на основе трансферрина, 
загруженных красителем IR780 [14]. Описанные 
системы отличаются сложностью получения и 
пассивным накоплением в опухоли. Таким образом, 
разработка простой, но вместе с тем адресной и  
эффективной системы для одновременного фото- 
термического и фотодинамического воздействия  
на раковые клетки по-прежнему остается актуаль- 
ной задачей.

Целью данного исследования была разработка 
адресной наноплатформы на основе HER2-специ- 

фичных липосом малого размера, загруженных 
гептаметинцианиновым красителем IR780, и изу- 
чение возможности применения данной плат- 
формы для адресной и одновременной фототер- 
мической и фотодинамической терапии в отно- 
шении HER2-положительных раковых клеток  
in vitro в условиях одноволнового лазерного облу- 
чения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Получение и характеристика HER2-специ- 
фичных липосом, загруженных IR780. В 
качестве мишени для нацеливания липосом на  
раковые клетки нами был выбран опухоль-ассоци- 
ированный антиген HER2 (рецептор второго типа  
эпидермального фактора роста человека), сверх- 
экспрессия которого характерна для многих опухо- 
лей эпителиального происхождения человека: рака 
молочной железы, легких, желудка, яичников и 
предстательной железы [15]. Высокий уровень 
экспрессии в раковой клетке и низкий уровень 
экспрессии в нормальной эпителиальной ткани 
позволяют рассматривать HER2 как оптимальную 
мишень для адресной терапии рака. В современ- 
ной медицинской практике онкомаркер HER2 
используется в качестве терапевтической ми- 
шени для моноклональных антител (Пертузумаб, 
Трастузумаб) и ингибиторов киназ (Лапатиниб) 
при лечении HER2-положительных опухолей 
молочной железы [16].

В качестве векторной молекулы мы использо- 
вали искусственно созданный скаффолдный белок 
на основе анкириновых повторов DARPin_9-29 
(Designed Ankyrin Repeat Protein), представляющий 
собой миметик антитела и взаимодействующий  
с субдоменом I HER2 с высокой аффинностью  
(KD = 3.8 нМ) [17].

Липосомы представляют собой отличные нано- 
контейнеры для доставки лекарств, поскольку, 
обладая бислойной структурой, похожей на состав 
биологических клеточных мембран, способствуют 
повышению биосовместимости препаратов. 
Кроме того, фосфолипидный состав липосом 
позволяет инкапсулировать как гидрофильные, 
так и гидрофобные препараты. 

Липосомы, загруженные IR780 и модифи- 
цированные по внешней поверхности HER2-
специфичным адресным модулем DARPin_9-29 
(рис. 1а), получали, как описано в “Эксперим. 
части”. Для определения концентрации IR780 в 
водном растворе первоначально строили калибро- 
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вочную кривую (рис. 1б), как описано в “Эксперим.  
части”. Интенсивность поглощения IR780 воз- 
растает линейно с увеличением концентрации 
(рис. 1б). Как видно из данных, приведенных на 
рис. 1в, при загрузке IR780 в липосомы (синяя 
кривая), происходит смещения максимума погло- 
щения в длинноволновую область относительно 
свободного красителя в водном растворе (сире- 
невая кривая). Чтобы иметь возможность оце- 
нить концентрацию красителя, включенного 
в липосомы, DARP-Lip(IR780) инкубировали  
10 мин при комнатной температуре с 0.5%-ным  
раствором Triton X-100. Triton Х-100, раство- 
ряющий фосфолипидные мембраны, восстанав- 
ливает исходный спектр красителя (зеленая кри- 
вая на рис. 1в), о чем свидетельствует совпадение 
максимумов поглощения свободного красителя 
и красителя, высвобожденного из липосом. Как 
видно из рис. 1в (зеленая кривая), поглощение 
на 773 нм IR780 в этом случае равно 0.899, что, 
исходя из калибровочной кривой, составляет, 
2.58 мкг/мл (3.9 мкМ). Учитывая коэффициент 
разбавления образца (х31), концентрация IR780 
в липосомах составляет 120.9 мкМ. Спектр 
DARP-Lip(IR780) совпадает со спектром пустых  

липосом (оранжевая кривая на рис. 1в), получен- 
ных 17-кратным продавливанием суспензии 
фосфолипидов (0.2 мг/мл) через фильтр с диа- 
метром пор 100 нм. Ранее с использованием 
гидрофильного мембранонепроницаемого кра- 
сителя фталоцианин-3,4',4',4''-тетрасульфоната 
меди мы показали, что 1 мг/мл суспензии липидных 
везикул соответствует 1.1 нМ [18]. Таким образом, 
концентрация HER2-специфичных липосом, 
загруженных IR780, составляет 6.82 (0.22 × 31) нМ,  
и, следовательно, молярное соотношение краси- 
теля к липосомам (120 900/6.82) равно ~17 727.

Размер и ζ -потенциал липосом, загруженных 
IR780, и липосом, модифицированных DARPin, 
измеряли с помощью анализатора Zetasizer. 
Конъюгация липосом с DARPin_9-29 приводит 
к увеличению их гидродинамического диаметра 
от 90.7 ± 32.3 до 143.7 ± 49.4 нм и изменению 
ζ-потенциала с 1.7 ± 7.9 до –11.9 ± 5.2 мВ.

Анализ специфичности взаимодействия 
адресных липосом с HER2. Способность адрес- 
ного модуля DARPin_9-29 в составе конъю- 
гата DARP-Lip(IR780) специфически взаимо- 
действовать с HER2 на поверхности клеток была  
подтверждена с помощью проточной цитомет- 

Рис. 1. Физико-химические характеристики DARP-Lip(IR780). (а) – Принцип действия адресной наноплатформы на 
основе HER2-специфичных липосом, загруженных IR780; (б) – калибровочная кривая IR780 в водном растворе. По- 
казана линейная зависимость интенсивности поглощения IR780 (OD773) от концентрации; (в) – спектры поглощения в 
водном растворе пустых липосом (оранжевая кривая), DARP-Lip(IR780) (синяя кривая), свободного IR780 (2 мкг/мл,  
сиреневая кривая) и DARP-Lip(IR780) после обработки Triton X-100 (зеленая кривая).

(а) (б)

(в)
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рии и конфокальной микроскопии (рис. 2). Чтобы 
иметь возможность визуализировать DARP-
Lip(IR780) с учетом лазерного оснащения имею- 
щихся в лаборатории проточного цитометра и 
конфокального микроскопа, DARP-Lip(IR780) 
были конъюгированы с флуоресцентным краси- 
телем AF-488-NHS, как описано в “Эксперим. 
части”. Как видно из данных проточной цито- 
метрии (рис. 2а), значение средней интенсив- 
ности флуоресценции HER2-суперэкспрес- 
сирующих клеток SKOV-3, обработанных  
DARP-Lip(IR780)-AF-488 (красная кривая), пре- 
восходит в ~7.4 раза среднее значение интенсив- 
ности флуоресценции клеток SKOV-3, не обра- 
ботанных DARP-Lip(IR780)-AF-488 (синяя кри- 
вая). В то же время клетки HeLa, для которых 
характерен нормальный уровень HER2, не обна- 
руживают сильного сдвига интенсивности флуо- 

ресценции клеток, обработанных адресными 
липосомами (красная кривая), относительно конт- 
рольных клеток (синяя кривая). Эти результаты 
указывают на специфическое связывание DARP-
Lip(IR780) с клетками, сверхэкспрессирующими 
HER2.

Специфичность связывания DARP-Lip(IR780)  
с HER2 на поверхности раковых клеток также  
была подтверждена конфокальной микроскопией: 
после 20-минутной инкубации клеток SKOV-3  
с DARP-Lip(IR780)-AF-488, наблюдалось ха- 
рактерное окрашивание клеточной мембраны  
(рис. 2б, левая фотография). Дальнейшая инку- 
бация в течение 90 мин приводила к интернали- 
зации DARP-Lip(IR780)-AF-488, о чем свиде- 
тельствуют зеленые пиксели в цитоплазме кле- 
ток (рис. 2б, правая фотография).

Рис. 2. Взаимодействие DARP-Lip(IR780) с HER2 in vitro. (а) – Оценка HER2-специфичности DARP-Lip(IR780) в 
отношении HER2-положительных клеток SKOV-3 и клеток HeLa (нормальный уровень экспрессии HER2) методом 
проточной цитометрии. На пиктограммах указана средняя интенсивность флуоресценции для клеток, не обработанных 
DARP-Lip(IR780) (синяя кривая), и клеток, обработанных DARP-Lip(IR780) (красная кривая); (б) – изучение 
взаимодействия DARP-Lip(IR780) с клетками SKOV-3 методом конфокальной микроскопии. На фотографиях указано 
время инкубации клеток с DARP-Lip(IR780) до съемки. Ядра окрашены Hoechst 33342.

(а)

(б)
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Фототоксические характеристики DARP-
Lip(IR780) in vitro. Фототермические свойства 
IR780 в составе липосом оценивали по изменению 
температуры раствора DARP-Lip(IR780), подверг- 
нутого облучению лазером 808 нм (1 Вт/см2) в  
течение 3 мин. Мониторинг температуры, выпол- 
ненный в режиме реального времени, показал 
строгую температурную зависимость от концент- 
рации раствора липосом, загруженных красителем 
IR780. Как видно из рис. 3а, под действием об- 
лучения температурный подъем происходит в те- 
чение короткого временного периода (<60 с), 
крутизна подъема зависит от концентрации 
красителя в липосомах и достигает максимума к 
120 с облучения. Температура раствора липосом 

с концентрацией красителя IR780 130 мкМ сос- 
тавляла 68°С через 120 с облучения. Отметим, 
что PBS, подвергнутый облучению лазером в 
таких же условиях, не показал изменения тем- 
пературы.

Фотодинамические свойства адресных липо- 
сом оценивали по способности IR780, включен- 
ного в липосомы, образовывать активные формы  
кислорода (АФК) в живых клетках под дейст- 
вием облучения. Для этого использовали нефлуо- 
ресцирующий зонд карбокси-H2DCFDA, ко- 
торый, проникнув в клетку, подвергается деацети- 
лированию неспецифическими внутриклеточ- 
ными эстеразами с образованием восстановлен- 
ного продукта флуоресцеина карбокси-DCFH.  

Рис. 3. Фототоксические характеристики DARP-Lip(IR780) in vitro. (а) – Зависимость температуры от времени облучения 
растворов DARP-Lip(IR780) разной концентрации лазером с длиной волны 808 нм (1 Вт/см2); (б) – детекция АФК 
методом проточной цитометрии в живых клетках SKOV-3, обработанных DARP-Lip(IR780) и подвергнутых облучению 
(808 нм, 1 Вт/см2, 2 мин). На пиктограмме указаны значения средней интенсивности флуоресценции в зеленом канале 
для клеток, не обработанных DARP-Lip(IR780) и не подвергнутых облучению (красная кривая, контроль), клеток, 
обработанных DARP-Lip(IR780) и подвергнутых облучению (синяя кривая), обработанных DARP-Lip(IR780) и не 
облученных (сиреневая кривая), облученных, но не инкубированных с DARP-Lip(IR780) (коричневая кривая), и 
обработанных перекисью (зеленая кривая); (в) – фотоиндуцированная цитотоксичность в отношении клеток SKOV-3 
(синяя кривая) и HeLa (зеленая кривая), инкубированных с DARP-Lip(IR780), и клеток, не инкубированных с DARP-
Lip(IR780) (SKOV-3 – сиреневая кривая, HeLa – коричневая кривая). Планки погрешностей на диаграммах (а) и (в) 
представлены стандартной ошибкой среднего (n = 3).

(а) (б)

(в)
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В присутствии АФК карбокси-DCFH окисляется 
и флуоресцирует в зеленой области спектра. Со- 
гласно данным проточной цитометрии (рис. 3б), 
сдвиг интенсивности флуоресценции (в 4.5 раза)  
в зеленом канале относительно контрольных кле- 
ток SKOV-3 (красная кривая) наблюдается лишь 
для клеток, инкубированных с DARP-Lip(IR780) 
в течение 3 ч и подвергнутых облучению (808 нм,  
1 Вт/см2, 2 мин) (синяя кривая). Клетки SKOV-3,  
обработанные DARP-Lip(IR780), но не подверг- 
нутые облучению (сиреневая кривая), равно как  
и клетки, подвергнутые только облучению без ин- 
кубации с DARP-Lip(IR780) (коричневая кривая), 
не дают сдвига флуоресценции в зеленом канале 
относительно контрольных клеток. В качестве 
положительного контроля использовали клетки 
SKOV-3, обработанные 50 мкМ раствором H2O2 
(зеленая кривая), для которых также наблю- 
дали сдвиг интенсивности флуоресценции отно- 
сительно контроля.

Таким образом, результаты экспериментов по 
изучению фототермических и фотодинамических 
свойств DARP-Lip(IR780) однозначно доказывают, 
что данный препарат может быть использован для 
одновременной сочетанной ФТТ/ФДТ-терапии, ин- 
дуцируемой одномоментным облучением инфра- 
красным лазером.

Для оценки HER2-специфичной светоинду- 
цированной цитотоксичности адресных липосом, 
загруженных IR780, клетки SKOV-3 и HeLa инку- 
бировали в течение 3 ч с различными концент- 
рациями DARP-Lip(IR780), после чего подвер- 
гали облучению лазером 808 нм (1 Вт/см2, 3 мин),  
как описано в “Эксперим. части”. Как видно из  
рис. 3в, DARP-Lip(IR780) проявляют дозозави- 
симую фотоиндуцированную цитотоксичность 
относительно клеток SKOV-3, суперэкспрес- 
сирующих HER2, IC50 = 2.85 мкМ (синяя кри- 
вая на рис. 3в). В отношении клеток HeLa, ха- 
рактеризующихся нормальным уровнем экспрес- 
сии HER2, цитотоксический эффект (IC50 =  
1.05 мкМ) оказался в ~2.7 раза слабее (зеленая 
кривая на рис. 3в). При инкубации клеток 
SKOV-3 и HeLa с DARP-Lip(IR780) в отсут- 
ствие облучения существенной цитотоксичности 
in vitro не наблюдалось (бордовая и коричневые 
кривые соответственно).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение HER2-специфичных липосом, за- 
груженных красителем IR780. Стоковый раствор 
(6.7 мг/мл) IR-780 (Merck, США) готовили в ди- 

метилсульфоксиде (DMSO, Sigma-Aldrich, США) 
с последующим разбавлением водой до получе- 
ния растворов с концентрацией 0.5, 1.0, 1.5, 2.0, 
2.5 и 3.0 мкг/мл. Спектры поглощения регистриро- 
вали на УФ-спектрофотометре Ultrospec 7000 
(GE, США) и строили калибровочную кривую 
зависимости концентрации от поглощения на 
длине волны 773 нм. 

Загрузку липосом проводили, как описано в  
работе [18]. Вкратце, 0.125 мл суспензии фосфо- 
липидов (Avanti Polar Lipids, США; конечная 
концентрация 4 г/л), приготовленной из гранул  
L-α-фосфатидилхолина (40%), фосфатидил- 
этаноламина (16%) и фосфатидилинозитола (11%), 
смешивали с 0.575 мл водного раствора IR780 
(конечная концентрация 500 мкМ). Суспензию 
быстро замораживали (–150°С)/оттаивали (30°С) 
(10 циклов) и многократно (17 раз) пропускали 
через экструдер (диаметр пор фильтра 100 нм). 
Краситель, не включенный в липосомы, отделяли 
с помощью гель-проникающей хроматографии на 
колонке, упакованной сорбентом сефароза CL-2B 
(Cytiva, США). 

Функционализацию внешней поверхности  
липосом HER2-специфичным DARPin_9-29  
проводили по аминогруппам фосфотидилэтанол- 
амина. Для этого липосомы, загруженные IR780, 
инкубировали с 5-кратным молярным избытком 
сульфо-EMCS (эфир N-ε-малеимидокапроилокси
сульфосукцинимида). Параллельно DARPin_9-29 
(100 мкМ в 20 мМ NaPi, pH 7.5) инкубировали с 
2-иминотиоланом (6 мМ, реагент Траута, позво- 
ляющий ввести SH-группу по первичным аминам  
белка). Обе реакции проводили при комнатной 
температуре в течение 40 мин, после чего продукты 
отделяли от несвязавшихся модифицирующих 
агентов на колонке NAP5 (Cytiva, США). Конъюга- 
цию сульфо-EMCS-протеолипосом с DARPin-SH  
проводили в течение 40 мин при комнатной 
температуре; DARP-Lip(IR780) отделяли от 
несвязанного DARPin_9-29 гель-фильтрацией на 
колонке, упакованной сефарозой CL-2B.

Клеточные линии. В работе использовали 
клеточную линию аденокарциномы яичников 
человека SKOV3 (коллекция ИБХ РАН) со 
сверхэкспрессией HER2 (106 молекул/клетка), 
а также клеточную линию карциномы шейки 
матки HeLa (коллекция ИБХ РАН) c нормальным 
уровнем экспрессии HER2 (104 молекул/клетка). 
Клетки культивировали в стандартных условиях 
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(37°С во влажной атмосфере с 5% CO2) в среде 
RPMI 1640 (ПанЭко, Россия), содержащей 2 мМ 
L-глутамина (ПанЭко, Россия), 10% фетальной 
бычьей сыворотки (Gibco, США) и антибиотик 
(10 ед./мл пенициллина, 10 мкг/мл стрептомицина; 
ПанЭко, Россия).

Анализ специфичности взаимодействия 
адресных липосом с HER2. HER2-специфичную 
активность адресного модуля DARPin_9-29 в 
составе липосом DARP-Lip(IR780) оценивали 
методами конфокальной микроскопии и проточ- 
ной цитометрии. Поскольку набор лазеров и де- 
текторов проточного цитометра NovoCyte 3000  
(ACEA Biosciences, США) и конфокального 
микроскопа LSM 980 (Carl Zeiss, Германия) 
не позволяют детектировать IR780, липосомы 
DARP-Lip(IR780) были конъюгированы с  
N-гидроксисукцинимидным эфиром флуорес- 
центного красителя AF488-NHS (Lumiprobe, 
Россия). Конъюгацию DARP-Lip(IR780) с 
10-кратным молярным избытком AF488-NHS 
проводили при комнатной температуре в те- 
чение 1 ч в растворе 20 мМ NaPi, рН 7.5, 150 мМ 
NaCl. Непрореагировавший AF488-NHS отде- 
ляли от DARP-Lip(IR780) гель-фильтрацией на 
колонке NAP5 (Cytiva, США).

Для анализа взаимодействия DARP-Lip(IR780) 
c HER2 на поверхности раковых клеток методом 
проточной цитометрии клетки SKOV-3 и HeLa 
(105 клеток в 200 мкл полной ростовой среды) 
инкубировали 7 мин при 37°С с 300 нМ DARP-
Lip(IR780)-AF488 (концентрация указана по 
красителю AF488). Клетки трижды промывали 
PBS и анализировали на приборе NovoCyte 3000 
(ACEA Biosciences, США)). Флуоресценцию 
AF488 возбуждали лазером с длиной волны 488 нм  
и детектировали в канале 530 ± 30 нм (канал 
FITC-H).

Для оценки взаимодействия DARP-Lip(IR780) 
c HER2 на поверхности раковых клеток методом 
конфокальной микроскопии 5000 клеток линии  
SKOV-3 высевали в лунки 96-луночного план- 
шета со стеклянным дном (Eppendorf, США) и 
культивировали в течение ночи. На следующий 
день к клеткам добавляли 500 нМ DARP-
Lip(IR780)-AF488 (концентрация указана по 
AF488). Инкубацию клеток с конъюгатом про- 
водили в течение 10 мин при 37°С. Ядра окраши- 
вали 10 нМ Hoechst 33342 (Invitrogen, США) в 
течение 10 мин при 37°C. Клетки трижды промы- 

вали PBS и анализировали с помощью конфокаль- 
ного микроскопа LSM 980 (Carl Zeiss, Германия), 
используя следующие параметры: масляный им- 
мерсионный объектив 63× Plan-Apochromat, воз- 
буждение Hoechst 33342 – 405 нм, детекция флуо- 
ресценции – 410–520 нм, возбуждение AF488 –  
488 нм, детекция флуоресценции – 497–562 нм.

Фототермические и фотодинамические 
свойства HER2-специфичных липосом, загру- 
женных IR780. DARP-Lip(IR780) (с концентра- 
цией 130, 65 и 32.5 мкМ в объеме 300 мкл), раст- 
воренные в PBS, подвергали лазерному облуче- 
нию при длине волны 808 нм (1 Вт/см2). Коли- 
чество повторов для каждой концентрации равно 
трем. Изменение температуры отслеживали с 
помощью тепловизора (FLIR Systems, Wilsonville, 
США). В качестве контроля использовали раствор 
PBS.

Образование АФК под действием облучения 
в клетках, обработанных DARP-Lip(IR780), про- 
водили с использованием чувствительного к АФК 
зонда 5,6-карбокси-2',7'-дихлордигидрофлуоре
сцеиндиацетата (carboxy-H2DCFDA, Invitrogen, 
США). Карбокси-H2DCFDA растворяли в DMSO 
для получения 10 мМ исходного раствора и до- 
полнительно разбавляли перед использованием 
до концентрации 1 мкМ. Клетки SKOV-3, за  
сутки рассеянные в лунки 24-луночного планшета, 
инкубировали в течение 3 ч с 1 мкМ раствором 
DARP-Lip(IR780), облучали 3 мин лазером с 
длиной волны 808 нм (1 Вт/см2), после чего ин- 
кубировали в темноте 30 мин при 37°C с 1 мкМ 
раствором H2DCFDA. Клетки собирали с подложки 
с помощью 0.05%-ного раствора трипсин-EDТА,  
суспендировали в PBS и немедленно анализиро- 
вали с помощью проточного цитометра NovoCyte 
3000 (ACEA Biosciences, США), используя для 
возбуждения флуоресценции лазер с длиной волны 
488 нм. Детекцию флуоресценции проводили в 
диапазоне 497–562 нм (канал FITC-H). В качестве 
положительного контроля в опыте использовали 
клетки, обработанные 50 мкМ раствора Н2О2 в 
течение 1 ч.

Размер и ζ -потенциал липосом. Гидродинами- 
ческие размеры и ζ-потенциалы адресных/без- 
адресных липосом, содержащих IR780, опреде- 
ляли с помощью анализатора Zetasizer Nano ZS  
(Malvern Instruments Ltd, Великобритания). Изме- 
рения проводили в 0.1%-ном растворе PBS, 
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рН 7.5, при 25°C. Для расчета ζ-потенциалов 
использовали приближение Смолуховского.

Анализ светоиндуцированной цитотоксич- 
ности DARP-Lip(IR780) in vitro. Клетки SKOV-3  
и HeLa высевали в 96-луночные планшеты с  
плотностью 3.5 × 104 и 2.5 × 104 кл./мл соответ- 
ственно и инкубировали в течение ночи. К клет- 
кам добавляли DARP-Lip(IR780) в различ- 
ных концентрациях (от 150 нМ до 80 мкМ, кон- 
центрация указана по красителю IR780), инкуби- 
ровали 3 ч, после чего облучали лазером с длиной 
волны 808 нм (1 Вт/см2, 3 мин). Далее клетки 
инкубировали при 37°C в атмосфере 5% CO2 в 
течение 72 ч и проводили оценку цитотоксич- 
ности с помощью МТТ-теста. Для этого удаляли 
культуральную среду и добавляли по 100 мкл 
раствора МТТ (ПанЭко, Россия) (0.5 г/л) в каж- 
дую лунку. Клетки инкубировали при 37°C в те- 
чение 1 ч, удаляли раствор МТТ и добавляли по 
100 мкл DMSO в каждую лунку для растворения 
кристаллов формазана. Оптическую плотность 
измеряли при длине волны 570 нм с помощью 
планшетного ридера Infinite M100 Pro (Tecan, 
Австрия). Относительную жизнеспособность 
определяли с помощью GraphPad Prism (версия 
9.4.0). Данные представлены стандартной 
ошибкой среднего.

ЗАКЛЮЧЕНИЕ

Разработана мультифункциональная плат- 
форма на основе HER2-специфичных нанолипо- 
сом, содержащих краситель ближнего инфракрас- 
ного диапазона IR780, для сочетанной фототер- 
мической и фотодинамической терапии в усло- 
виях одноволнового лазерного облучения. Мето- 
дами проточной цитометрии и конфокальной 
микроскопии установлено, что разработанная 
платформа обладает HER2-опосредованной троп- 
ностью к клеткам, характеризующимися супер- 
экспрессией опухоль-ассоциированного антигена 
HER2. 

Показано, что HER2-специфичные липосомы 
характеризуются высокой степенью загрузки кра- 
сителя IR780; инкапсулированный в липосомы 
в высокой концентрации IR780 проявляет фото- 
термические и фотодинамические свойства. В 
опытах in vitro установлено, что разработанная 
система проявляет дозозависимую фотоинду- 
цированную цитотоксичность относительно 
HER2-суперэкспрессирующих клеток.

Таким образом, проведенные исследования 
позволяют заключить, что HER2-специфичные 
липосомы, загруженные IR780, представляют 
собой многообещающую формуляцию для 
одновременной сочетанной фототермической 
и фотодинамической терапии. Принимая во 
внимание оптические характеристики IR780 
(возбуждение и флуоресценция в ближним 
ИК-диапазоне), в перспективе данная система 
также может использоваться в биомедицинских 
исследованиях для визуализации опухолевых 
образований in vivo и рассматриваться как 
тераностическая наноплатформа.
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During cancer treatment the combined effect of photothermal and photodynamic therapy has unique 
advantages over each of these methods alone. In this study, a multifunctional targeted nanoplatform for 
simultaneous combined photothermal and photodynamic therapy under 808 nm infrared laser irradiation 
was developed. The developed system consists of ~140 nm liposomes specific to the tumor-associated 
HER2 antigen and loaded with the near-infrared heptamethincyanine dye IR780. The targeting of lipo-
somes to the HER2 is determined by the HER2-specific scaffold protein DARPin_9-29 located on the 
outer surface of liposomes. It has been established that IR-780, loaded in liposomes, retains photothermal 
and photodynamic properties: upon irradiation, the temperature of IR780-loaded liposome solution rapidly 
increases (up to 60°C within 60 s), and the production of reactive oxygen species is also detected. In vitro 
experiments have shown that HER2-specific liposomes containing IR780 have photoinduced cytotoxicity 
against HER2-overexpressing cells, causing the death of 50% of the cell population at a concentration of 
2.85 μM. The results of the study suggest that HER2-specific liposomes containing IR780 have excellent 
targeted characteristics, and IR780 can be used as an active substance for simultaneous photothermal and 
photodynamic therapy.
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