— ПИСЬМА РЕДАКТОРУ —

УДК 547.782

КОНФОРМАЦИОННО-ФИКСИРОВАННЫЙ 5-БЕНЗИЛИДЕН-4*H*-ИМИДАЗОЛТИОН КАК ФЛУОРОГЕННЫЙ КРАСИТЕЛЬ

© 2021 г. И. Н. Мяснянко*, **, М. А. Сычева*, А. С. Гавриков*, Н. С. Балеева*, **, М. С. Баранов*, **

*ФГБУН "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН, Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

**Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Россия, 117997 Москва, ул. Островитянова, 1

> Поступила в редакцию 22.03.2021 г. После доработки 10.04.2021 г. Принята к публикации 12.04.2021 г.

Синтезирован конформационно-фиксированный 5-(4-(диэтиламино)бензилиден)-2,3-диметил-3,5-дигидро-4*H*-имидазол-4-тион. Установлено, что производное хромофоров флуоресцентных белков, содержащее серу вместо кислорода в имидазолоновом фрагменте, характеризуется смещенными в длинноволновую область спектра поглощением и испусканием и более высоким коэффициентом экстинкции в сравнении с соответствующим производным, содержащим атом кислорода. Показано, что данное соединение может быть использовано во флуоресцентной микроскопии в качестве флуорогенного красителя для флуороген-активирующих белков на основе липокалина.

Ключевые слова: GFP, хромофоры, флуорогенные красители, флуоресценция

DOI: 10.31857/S0132342321060208

ВВЕДЕНИЕ

Производные хромофоров флуоресцентных белков — перспективная основа для разработки систем флуоресцентного мечения. Удобные методы синтеза и модификаций позволяют получать вещества с самой разной окраской и разными оптическими свойствами. Такие соединения могут быть использованы для визуализации в качестве флуорогенных лигандов для РНК и белков [1—3], а также для окрашивания отдельных клеточных органелл [4, 5].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ранее нами было показано, что конформационно-фиксированный аминный аналог хромофора GFP (соединение (I), схема 1) может быть использован в качестве флуорогенного красителя для некоторых мутантных форм белка Blc семейства липокалинов [6]. Позднее мы также синтезировали ряд аналогов этого соединения, характеризующихся смещенными в длинноволновую область спектра поглощением и испусканием [7]. Разработка таких красителей — важная задача,

т.к. поглощение света биологическими объектами в области 700—900 нм минимально. Настоящая работа — продолжение этого исследования. Известно, что введение в молекулу красителя атомов серы может привести к смещению спектральных максимумов в длинноволновую область [8, 9]. Мы исследовали эффективность такой модификации на примере аминопроизводного хромофора GFP (I). С помощью известного тионирующего реагента Лавессона мы синтезировали тиопроизводное (II) (схема 1).

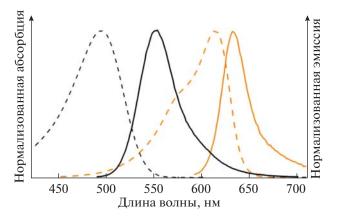

$$\begin{array}{c|c} NEt_2 & NEt_2 \\ \hline \\ BF_2 & \\ \hline \\ N & \\ N & \\ \hline \\ N & \\ N & \\ \hline \\ N & \\ S & \\ \hline \\ N & \\ N & \\ S & \\ \end{array}$$

Схема 1. Схема синтеза производного (**II**). LR — реагент Лавессона (Lawesson's Reagent), PhMe — толуол, THF — тетрагидрофуран.

Исследование оптических свойств полученного соединения (II) и сравнение их со свойствами предшественника (I) показало, что замена кисло-

Сокращения: GFP — зеленый флуоресцирующий белок (Green Fluorescent Protein).

^{**} Автор для связи: (тел.: +7 (926) 704-13-72; эл. почта: nsbaleeva@gmail.com).

Рис. 1. Спектры абсорбции (пунктир) и эмиссии (сплошная) соединений (I) (черный) и (II) (оранжевый) в ацетонитриле.

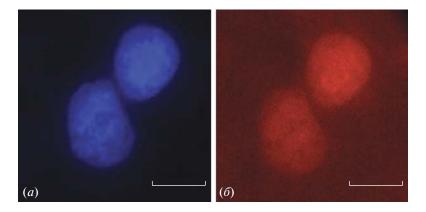
рода на серу привела к заметным изменениям. Наблюдается батохромный сдвиг спектральных максимумов на 80-120 нм (рис. 1). Величина квантового выхода флуоресценции соединения (II) варьирует в диапазоне $\sim 10-20\%$ и в меньшей степени зависит от используемого растворителя (табл. 1). Также было обнаружено двух-трехкратное увеличение коэффициента экстинкции (табл. 1).

На следующем этапе работы мы продемонстрировали, что новое тиопроизводное (II) может быть использовано как лиганд для мутанта Blc-A36C/L141N (названного ранее DiB1) [7] для окрашивания живых клеток линии HeLa Kyoto, трансфицированных конструкцией H2B-TagBFP-DiB1. Использование такой конструкции позволило не только оценить возможность применения соединения (II) в качестве флуорогена белка DiB1, но и исследовать селективность окрашивания этой метки. Так, при добавлении тиопроизводного (II) в

клеточную среду наблюдалось появление флуоресцентного сигнала в красном канале (от пары DiB1—соединение (II)), который полностью соответствовал сигналу в синем канале (от белка BFP) (рис. 2), что говорит о селективности окрашивания предложенной нами пары белок—флуороген и отсутствии нецелевого окрашивания.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование. Спектры ЯМР (δ , м.д.; J, Гц) регистрировали на приборе Fourier 300 (300 МГц; Bruker, США) при 303 К в CDCl₃ (внутренний стандарт — Ме₄Si), спектры поглощения — на спектрофотометре Cary 100 Bio (Varian, США), спектры флуоресценции — на спектрофлуориметре Cary Eclipse (Varian, США). Температуры плавления определяли на приборе SMP 30 (Stuart Scientific, Великобритания) и не исправляли. Массспектры высокого разрешения записывали на приборе micrOTOF II (Bruker, США), ионизация электрораспылением.


Синтез. Соединение (Z)-5-(4-(диэтиламино)-2-(дифторборанил)бензилиден)-2,3-диметил-3,5-дигидро-4H-имидазол-4-он (I) синтезировали согласно описанной ранее методике [10].

(Z)-5-(4-(Диэтиламино)-2-(дифторборанил) бензилиден)-2,3-диметил-3,5-дигидро-4*H*-ими-дазол-4-тион (II). К раствору соединения (I) (150 мг, 0.5 ммоль) в 8 мл смеси толуол—тетрагидрофуран (1:1) добавляли 2,4-бис(4-метоксифенил)-1,3,2,4-дитиадифосфетан-2,4-дисульфид (реагент Лавессона) (405 мг, 1 ммоль) и кипятили в течение 10 мин. Затем реакционную смесь охлаждали до комнатной температуры и упаривали на роторном испарителе. Полученный продукт дополнительно очищали с помощью колоночной хроматографии (элюент хлористый метилен—эта-

Таблица 1. Оптические свойства соединений (I) и (II) в разных растворителях

Растворитель	Соединение	Максимум абсорбции, нм	Коэффициент экстинкции, M^{-1} см $^{-1}$	Максимум эмиссии, нм	Квантовый выход флуоресценции, %
Вода	(I)	520	54000	563	3
	(II)	611	98000	627	9
Метанол	(I)	505	48 000	557	22
	(II)	613	137 000	630	8
Ацетонитрил	(I)	494	46 000	554	31
	(II)	614	114000	632	10
Этилацетат	(I)	492	47 000	538	63
	(II)	609	105000	631	16
Диоксан	(I)	497	51 000	538	72
	(II)	610	98000	630	23

Примечание: данные для соединения (I) взяты из статьи Baranov et al. [10].

Рис. 2. Флуоресцентная микроскопия живых клеток HeLa Kyoto, временно трансфицированных конструкцией, кодирующей H2B-TagBFP-DiB1, в синем (a) и красном (b) каналах. Конечная концентрация соединения (b) в растворе — b0 мкм. Масштабный отрезок — b10 мкм.

нол, 97 : 3). Фиолетовый порошок (85 мг, 50%); т. пл. $\sim 250^{\circ}$ С с разложением; 1 Н-ЯМР: 7.78 (с, 1 H), 7.43 (д, J_{2} 8.9, 1 H). 7.13 (с, 1 H), 6.63 (дд, J_{2} 8.9, 2.7, 1 H), 3.62 (с, 3 H), 3.56 (кв, J_{2} 7.0, 4 H), 2.83 (с, 3 H), 1.29 (т, J_{2} 7.0, 6 H); 13 С-ЯМР: 177.2, 156.3, 153.1, 137.9, 135.3, 134.4, 124.1, 115.6, 111.9, 45.2, 30.3, 29.7, 12.8; HRMS (ESI) m/z: найдено M 316.1478; рассчитано для C_{16} Н $_{20}$ ВFN $_{3}$ S $^{+}$, $[M]^{+}$ 316.1450.

Флуоресцентная микроскопия. Клеточную линию НеLa Куоtо выращивали в среде DMEM (ПанЭко, Россия) с 50 ед./мл пеницилина, 50 мг/мл стрептомицина (ПанЭко, Россия), 2 мМ L-глутамина (ПанЭко, Россия) и 10% бычьего сывороточного альбумина (HyClone, Thermo Scientific, США) при 37°С и 5% СО₂. Для временной трансфекции конструкцией H2B-TagBFP-DiB1 использовали трансфекционный агент FuGENE 6 (Ргомеда, США). Непосредственно перед съемкой среду DMEM заменяли на раствор Хэнкса (ПанЭко, Россия) с 20 мМ НЕРЕS (Sigma, США).

Широкопольную флуоресцентную микроскопию проводили с помощью микроскопа Leica 6000 (Leica, Германия) с объективом НСХ PL APO 100×/1.40-0.70NA. Микроскоп оснащен камерой Zyla sCMOS (Andor, Oxford Instruments, Великобритания) и источником света CoolLED pE-300. При съемке использовали фильтры BFP и mCherry. Концентрация флуорогена в среде составляла 5 мкМ, мощность облучения — 2 B/см² в синем канале (фильтр BFP) и 3.4 B/см² в красном канале (фильтр mCherry).

ЗАКЛЮЧЕНИЕ

5-Бензилиден-4*H*-имидазолтионы — высокоперспективная основа для создания флуорогенных красителей, характеризующаяся смещенными в длинноволновую область спектра поглощением и испусканием. Такие соединения могут быть использованы в качестве лигандов флуороген-активирующих белков для окрашивания живых клеток во флуоресцентной микроскопии.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 18-73-10105).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит описания каких-либо исследований с участием людей и использованием животных в качестве объектов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Paige J.S., Wu K.Y., Jaffrey S.R. // Science. 2011.
 V. 333. P. 642–646.
 https://doi.org/10.1126/science.1207339
- Filonov G.S., Moon J.D., Svensen N., Jaffrey S.R. // J. Am. Chem. Soc. 2014. V. 136. P. 16299–16308. https://doi.org/10.1021/ja508478x
- 3. Myasnyanko I.N., Gavrikov A.S., Zaitseva S.O., Smirnov A.Yu., Zaitseva E.R., Sokolov A.I., Malyshevskaya K.K., Baleeva N.S., Mishin A.S., Baranov M.S. // Chem. Eur. J. 2020. V. 27. P. 3986—3990. https://doi.org/10.1002/chem.202004760
- 4. *Li X., Zhao R., Wang Y., Huang C.* // J. Mater. Chem. B. 2018. V. 6. P. 6592–6598. https://doi.org/10.1039/C8TB01885E
- 5. Ermakova Y.G., Bogdanova Y.A., Baleeva N.S., Zaitseva S.O., Guglya E.B., Smirnov A.Yu., Zagudaylova M.B.,

- *Baranov M.S.* // Dyes Pigm. 2019. V. 170. P. 107550. https://doi.org/10.1016/j.dyepig.2019.107550
- Bozhanova N.G., Baranov M.S., Klementieva N.V., Sarkisyan K.S., Gavrikov A.S., Yampolsky I.V., Zagaynova E.V., Lukyanov S.A., Lukyanov K.A., Mishin A.S. // Chem. Sci. 2017. V. 8. P. 7138–7142. https://doi.org/10.1039/C7SC01628J
- Bozhanova N.G., Baranov M.S., Baleeva N.S., Gavrikov A.S., Mishin A.S. // Int. J. Mol. Sci. 2018. V. 19. P. 3778. https://doi.org/10.3390/ijms19123778
- 8. Ohulchanskyy T.Y., Donnelly D.J., Detty M.R., Prasad P.N. // J. Phys. Chem. B. 2004. V. 108. P. 8668–8672. https://doi.org/10.1021/jp0370674
- 9. Grimm J.B., Tkachuk A.N., Xie L., Choi H., Mohar B., Falco N., Schaefer K., Patel R., Zheng Qi., Liu Z., Lippincott-Schwartz J., Brown T.A., Lavis L.D. // Nat. Methods. 2020. V. 17. P. 815–821. https://doi.org/10.1038/s41592-020-0909-6
- Baranov M.S., Solntsev K.M., Baleeva N.S., Mishin A.S., Lukyanov S.A., Lukyanov K.A., Yampolsky I.V. // Chem. Eur. J. 2014. V. 20. P. 13234–13241. https://doi.org/10.1002/chem.201403678

Conformationally Locked 5-Benzylidene-4*H*-Imidazolthion as Fluorogenic Dye

I. N. Myasnyanko*, **, M. A. Sycheva*, A. S. Gavrikov*, N. S. Baleeva*, **, #, and M. S. Baranov*, **

#Phone: +7 (926) 704-13-72; e-mail: nsbaleeva@gmail.com

*Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia **Pirogov Russian National Research Medical University, ul. Ostrovitianova 1, Moscow, 117997 Russia

We report novel conformationally locked 5-(4-(diethylamino)benzylidene)-2,3-dimethyl-3,5-dihydro-4*H*-imidazole-4-thion. Derivatives of conformationally locked chromophores of the fluorescent protein containing sulfur instead of oxygen in the imidazolone fragment are characterized by red-shifted spectra and higher extinction coefficient relative to the corresponding derivative containing an oxygen atom. That compound can be used as fluorogenic dyes for lipocalin-based fluorogen-activating proteins in fluorescent microscopy.

Keywords: GFP, chromophores, fluorogenic dyes, fluorescence