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ВВЕДЕНИЕ

Bacillus cereus – условно-патогенные грамполо- 
жительные спорообразующие бактерии [1, 2]. 
Один из ключевых факторов патогенности этих 
бактерий – гемолитический токсин II, который 

относят к группе β-пороформирующих токсинов 
[3]. HlyII секретируется бактериями в виде водо- 
растворимых мономеров и олигомеризуется в при- 
сутствии мембраны клетки-мишени с образованием 
трансмембранных пор, что приводит к разрушению 
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Гемолизин II (HlyII) – один из ключевых патогенных факторов условно-патогенной грамположительной 
бактерии Bacillus cereus. HlyII, образуя поры на мембранах, лизирует клетки-мишени. HlyII относят 
к группе β-пороформирующих токсинов. Отличительная особенность HlyII – наличие С-концевого 
домена из 94 а.о. (HlyIICTD). Показано, что в слабокислых условиях (рН 5.0), соответствующих 
примембранной области, С-концевые домены (как сами по себе, так и в составе токсина) образуют 
устойчивые комплексы, состоящие из полноразмерных и укороченных молекул токсина. HlyII, 
HlyIILCTD (большой С-концевой фрагмент Met225–Ile412) и HlyIICTD получали с использова- 
нием рекомбинантных штаммов-продуцентов Escherichia coli BL21(DE3). Биотинилирование 
HlyIICTD проводили с использованием N-гидроксисукцинимидного эфира биотина. Взаимодействие 
HlyIICTD с HlyIICTD, HlyIILCTD и HlyII, а также взаимодействие HlyIICTD с мембранами эритро- 
цитов исследовали иммуноферментным анализом и иммуноблоттингом, как с использованием 
стрептавидина, конъюгированного с пероксидазой хрена, так и с использованием моноклональных 
антител против HlyII. HlyIICTD в слабокислых условиях взаимодействовал как с доменом HlyIICTD в 
составе полноразмерного токсина, так и с белком HlyIICTD. Взаимодействие HlyIICTD с мембраной 
эритроцитов кратно увеличивалось в присутствии токсина. 
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атакованной клетки, обеспечивая бактериям до- 
ступ к питательным веществам [4, 5]. Ген гемоли- 
зина II обнаружен более чем у 35% представи- 
телей B. cereus sensu lato [6]. Большинство штам- 
мов клинических изолятов B. cereus способны 
синтезировать и секретировать HlyII [3, 7], что 
свидетельствует о том, что гемолизин II – один из 
ключевых факторов вирулентности этой бактерии. 
Гемолизин II лизирует красные кровяные клетки 
кролика в 15 раз эффективнее, чем его ближайший 
известный гомолог α-токсин Staphylococcus aureus 
[3]. Аминокислотная последовательность HlyII 
на 34% идентична α-токсину. Белок HlyII имеет 
C-концевое удлинение из 94 а.о., обозначаемое как 
C-концевой домен HlyII [4]. Делеция HlyIICTD в 
молекуле HlyII снижает гемолитическую актив- 
ность в 8 раз при действии на эритроциты кро- 
лика [4]. HlyIICTD способен ориентированно 
связываться с мембранами клеток-мишеней [8], 
олигомеризоваться в их присутствии, образовывать 
ион-проводящие каналы на искусственной двух- 
слойной мембране, лизировать клетки макрофа- 
гального и Т-клеточного происхождения [9]. 
Структура HlyIICTD, определенная с помощью 
ЯМР, представляет собой псевдобочку, состоя- 
щую из двух α-спиралей, окруженных пятью 
β-слоями [10]. Изучение структуры HlyIICTD 
продемонстрировало уникальность этого домена, 
т.к. доменов подобной структуры среди других 
порообразующих токсинов не обнаружено [10, 11].

Целью данной работы было изучение свойств  
С-концевого домена HlyII в условиях, форми- 
рующихся вблизи клеточной мембраны (рН 5.0).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Образование комплексов HlyIICTD с полно- 
размерным токсином и с его укороченными 
формами при рН 5.0. Возможность HlyIICTD 
образовывать комплексы с полноразмерным 
токсином, HlyIICTD и HlyIILCTD проверяли 
методом ИФА по взаимодействию рекомбинантного 
HlyIICTD-био с сорбированными на пластик для  
ИФА рекомбинантными препаратами. Возможное 
взаимодействие во всех экспериментах с исполь- 
зованием биотиновой метки выявляли стрепта- 
видином, конъюгированным с пероксидазой хрена. 
При условиях рН и ионной силы, соответствую- 
щим физиологическим (pH 7.2), HlyIICTD прак- 
тически не взаимодействовал с токсином. Связы- 
вание HlyIICTD-био с иммобилизованными 

на пластик препаратами выявляли при рН 5.0  
(рис. 1а).

Для подтверждения полученных результатов 
комплексы “HlyIICTD + HlyII”, образующиеся 
при рН 5.0, идентифицировали с помощью моно- 
клональных антител против HlyII. В данном экс- 
перименте HlyIICTD сорбировали на пластик 
для ИФА. Далее добавляли раствор токсина при 
рН 5.0. На следующей стадии к образовавшемся 
комплексу добавляли моноклональные антитела 
против HlyII, не взаимодействующие с HlyIICTD 
[12, 13]. Связавшиеся антитела выявляли анти- 
телами кролика против иммуноглобулинов мыши,  
конъюгированными с пероксидазой. Все ис- 
пользованные антитела выявляли комплексы 
“HlyIICTD + HlyII”. Результаты представлены на 
рис. 1б.

Сравнение взаимодействия HlyIICTD-био с  
иммобилизованным HlyII при различных рН по- 

Рис. 1. (а) – Взаимодействие иммобилизованных 
HlyII, HlyIILCTD и HlyIICTD с биотинилированным 
HlyIICTD (10 мкг/мл); условия реакции (рН) ука- 
заны на рисунке; (б) – взаимодействие иммобили- 
зованного HlyIICTD с HlyII (5 мкг/мл) при рН 5.0, 
идентифицированное моноклональными антителами 
против HlyII (HP-7 [12]; LCTD-70, 71, 75, 76 [13]) в 
концентрации 10 мкг/мл. 

(а)

(б)
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казало, что снижение pH раствора приводит к 
увеличению степени связывания (рис. 2). 

Присутствие избытка немеченого HlyIICTD при  
рН 5.0 приводило к значительному концентра- 
ционно-зависимому увеличению связавшегося 
биотинилированного HlyIICTD, что свидетельство- 
вало об образовании комплексов за счет связыва- 
ния HlyIICTD с С‑концевым доменом в составе 
токсина и молекул HlyIICTD между собой (рис. 3).

Таким образом, показано, что С-концевой домен  
при рН 5.0 способен образовывать комплексы 
“HlyIICTD + HlyII”, взаимодействуя при этом  
с HlyIICTD в составе HlyII. В каждом из экспе- 
риментов дальнейшие процедуры по выявлению 
комплекса “HlyIICTD + HlyII” после его об- 
разования проводили при рН 7.2. Следовательно, 
образовавшиеся комплексы далее оставались 
стабильными. 

Высокомолекулярные белковые полосы 
(>245 кДа), образовавшиеся при инкубиро- 
вании HlyIICTD-био с HlyII при рН 5.0, были 
также выявлены иммуноблоттингом как при 
окрашивании стрептавидин-пероксидазой, так и 
моноклональным антителом LCTD-71 (рис. 4).  
Стрептавидин-пероксидаза окрашивала белко- 
вые полосы, содержащие HlyIICTD-био с моле- 
кулярной массой ~14 кДа, LCTD-71 выявляло 
белковую полосу с молекулярной массой ~46 кДа, 
соответствующей массе полноразмерного ток- 
сина.

Условие рH 5.0 in vitro соответствуют усло- 
виям вблизи клеточной мембраны, при которых 
пространственная структура белков прини- 
мает состояние частично расплавленной гло- 
булы [14, 15].

Взаимодействие биотинилированного 
HlyIICTD с эритроцитами в присутствии HlyII.  
Для подтверждения взаимодействия HlyIICTD 
и HlyII в присутствии мембраны эритроцитов 
был проведен эксперимент, схема которого пред- 
ставлена на рис. 5. Поскольку ранее было пока- 
зано, что HlyIICTD связывается с мембранами 
эритроцитов [8, 9], было проведено сравнение 
взаимодействия биотинилированного HlyIICTD с 
эритроцитами в присутствии и в отсутствие HlyII.  

Рис. 2. Взаимодействие иммобилизованного HlyII 
с биотинилированным HlyIICTD (10 мкг/мл) при 
различных рН. 

Рис. 3. Взаимодействие иммобилизованного HlyII 
с биотинилированным HlyIICTD в присутствии 
избытка немеченого HlyIICTD при рН 5.0. 

Рис. 4. Анализ взаимодействия HlyII с HlyIICTD 
методом иммуноблоттинга: 1 – HlyIICTD-био; 2 – 
HlyII + HlyIICTD-био, рН 5.0; 3 – HlyII + HlyIICTD-
био, рН 7.2; 4 – HlyII; 5 – HlyII + HlyIICTD-био, рН 5.0; 
6 – HlyII + HlyIICTD-био, рН 7.2; 1–3 – окрашивание 
стрептавидин-пероксидазой, 4–6 – моноклональным 
антителом LCTD-71.
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В случае, когда в реакционной смеси с эритро- 
цитами присутствовал только HlyIICTD, эритро- 
циты лизировали водой, далее в обоих случаях  
все процедуры проводили одинаково. Связав- 
шийся с фрагментами мембран HlyIICTD выяв- 
ляли стрептавидин-пероксидазой. В качестве 
отрицательного контроля стрептавидин-перокси- 
дазу добавляли к фрагментам мембран эритро- 
цитов, полученных после лизиса водой и после  
лизиса HlyII без добавления биотинилированного 
HlyIICTD. Результаты представлены на рис. 6.  
Показано, что в присутствии HlyII содержание 
меченого HlyIICTD в экспериментальной точке, 
содержащей фрагменты мембран, значительно 
возрастает. Полученные данные подтверждают 

Рис. 5. Взаимодействие биотинилированного HlyIICTD с эритроцитами в присутствии и в отсутствие HlyII (схема 
эксперимента).

Рис. 6. Относительное содержание HlyIICTD-био  
на фрагментах мембран после инкубации с эритро- 
цитами в присутствии и в отсутствие HlyII.
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предположение о том, что вблизи мембраны 
С-концевые домены демонстрируют способность 
взаимодействовать друг с другом.

Обсуждение полученных результатов. Био- 
логические мембраны характеризуются слож- 
ным составом и имеют отрицательный заряд 
на внешней стороне [16, 17]. Обнаружено и 
экспериментально подтверждено, что мембранная 
поверхность с высоким электростатическим 
потенциалом способна притягивать протоны 
[18, 19]. Этот факт предполагает существование 
индуцированного градиента поверхностного pH 
от более кислого непосредственно у поверхности 
с уменьшением кислотности при удалении от 
мембраны. Проведены теоретические расчеты и 
получены экспериментальные данные при по- 
мощи флуоресцентных зондов, подтверждающие 
факт того, что вблизи заряженной гидрофобной 
поверхности значение рН существенно ниже, 
чем рН воды [20, 21]. Локальное понижение 
pH составляет по крайней мере 2 единицы на 
расстоянии 5–15 Å от поверхности мембраны.  
При этом именно низкие значения pH делают 
возможным получение состояния частично рас- 
плавленной глобулы для многих белков в условиях  
in vitro [22]. Условия на границе раздела фаз в  
значительной степени отличаются от таковых в 
цитоплазме и влияют на структурно-функцио- 
нальные свойства белков, оказавшихся вблизи  
нее, которые принимают состояние расплавленной 
глобулы [14, 15]. Мембранная поверхность вы- 
полняет роль умеренно денатурирующего фактора. 
Структура белка подвергается суммарному дейст- 
вию усиливающихся электростатических взаимо- 
действий, локального понижения рН и изменения 
диэлектрической проницаемости среды вблизи 
поверхности мембраны [23].

Градиент поверхностного pH вблизи мембран 
может служить триггером многих структурных 
перестроек белков, взаимодействующих с мембра- 
нами. К таким белкам относятся бактериальные 
порообразующие токсины.

Гемолизин II B. cereus имеет pI 8.56 [3], для  
HlyIICTD расчетная pI составляет 8.8 [24], сле- 
довательно, в слабокислых условиях вблизи 
мембраны положительный заряд этих молекул 
возрастает, увеличивается вероятность их свя- 
зывания с мембраной. Полноразмерный HlyII и  
его укороченные формы эффективно взаимо- 
действуют с мембранами. Ранее продемонстри- 

ровано, что Kaff HlyIICTD для клеток крови 
различных видов практически не различаются [9].  
В то же время показано, что эффективность гемо- 
лиза эритроцитов разного происхождения раз- 
лична [25]. Возможно, что эффективность взаимо- 
действия как полноразмерного HlyII, так и его 
укороченной формы HlyIICTD зависит от состава 
мембран эукариотических клеток, подвергаю- 
щихся атаке. Поскольку не определено, существует 
ли место, обеспечивающее эффективное связы- 
вание на поверхности клеточных мембран для  
обеих молекул, неизвестно, выступают ли эти  
участки идентичными, частично перекрывающи- 
мися или независимыми, то, возможно, что 
HlyII и HlyIICTD могут быть конкурентами за 
место посадки на мембране, что, несмотря на 
концентрирование этих молекул в примембран- 
ном слое, может снизить эффективность поро- 
образования. Одновременно с этим в примембран- 
ной области при пониженном pH возможно уве- 
личение взаимодействия HlyII и HlyIICTD и об- 
разование гетероолигомерных форм, включаю- 
щих как полноразмерный HlyII, так и его укоро- 
ченную форму HlyIICTD. Такие олигомерные 
формы могут терять способность образовывать 
функционирующие поры и снижать эффектив- 
ность гемолиза, формируя гетероолигомерные 
комплексы с полноразмерным токсином или конку- 
рируя с ним за место связывания на поверхности 
эукариотической клетки [26]. 

Исследование С-концевого домена в усло- 
виях, соответствующих тем, которые образуются 
вблизи клеточной мембраны (рН 5.0), обнаружило 
свойство HlyIICTD образовывать комплексы  
между собой независимо от того, входит ли он 
в состав полноразмерного токсина, большого 
С-концевого фрагмента или сам по себе. HlyIICTD, 
находясь в состоянии расплавленной глобулы, 
собирает, связывая друг с другом партнеров, 
которые будут образовывать пору на мембране 
клетки-мишени. По-видимому, это уникальное 
свойство HlyIICTD, проявляющееся только в при- 
мембранной области, объясняет уменьшение гемо- 
литической активности мутантов гемолизина II,  
лишенных HlyIICTD, а также более высокую 
гемолитическую активность HlyII в сравнении с 
гемолизинами, не имеющими С-концевого домена 
[4]. Присутствие С-концевого домена в составе 
полноразмерного токсина не позволяет однозначно 
утверждать, что происходит увеличение реальной 
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концентрации HlyII в примембранной области 
и, следовательно, усиление цитолитической ак- 
тивности. Однако возможность перевода моле- 
кул в состояние частично расплавленной гло- 
булы позволяет предположить существование 
природного триггерного механизма создания как 
гомо-, так и гетероолигомеров. Не исключена воз- 
можность увеличения эффективности порообразо- 
вания за счет увеличения концентрации полно- 
размерных молекул HlyII в примембранной об- 
ласти.

Взаимодействие С-концевых доменов друг с 
другом может приводить к увеличению локаль- 
ной концентрации HlyII, что способствует олиго- 
меризации, необходимой для образования поры 
на мембране клетки-мишени. Олигомеризация 
либо предшествует, либо сопутствует обнажению 
гидрофобных поверхностей в пространственной 
структуре токсина [27–31].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение рекомбинантных белков. Созда- 
ние генно-инженерных конструкций, а также 
экспрессия и очистка рекомбинантных белков 
описана в работе [12].

Биотинилирование HlyIICTD. HlyIICTD 
биотинилировали N‑гидроксисукцинимидным 
эфиром биотина (Sigma, США), используя при  
этом раствор N‑гидроксисукцинимидного эфира 
биотина в диметилсульфоксиде (1 мг/мл). Смеши- 
вали реагент и HlyIICTD в молярном соотноше- 
нии 20  :  1, инкубировали 4 ч при комнатной 
температуре. Далее диализовали против фосфатно-
солевого буфера в течение ночи.

Непрямой твердофазный иммунофермент- 
ный анализ. Иммобилизацию рекомбинантных 
белков HlyII,  HlyIILCTD и HlyIICTD на 
поверхность экспериментальных лунок планше- 
тов для ИФА (Costar, США) проводили в течение 
ночи при 4°С из 50 мкл раствора с концентра- 
цией 1 мкг/мл в 50 мМ карбонат-бикарбонатном 
буфере, pH 9.6. Места возможной неспецифичес- 
кой сорбции блокировали избытком раствора 
PBST (150 мМ NaCl, 5.2 мМ Na2HPO4, 1.7 мМ 
KH2PO4, 0.1% Tween  20) в течение 30 мин при 
комнатной температуре. 

Далее в экспериментальные лунки вносили 
по 50 мкл раствора, содержащего 10 мкг/мл био- 
тинилированного HlyIICTD. Планшеты инкуби- 

ровали в течение 1 ч при 37°С. Для идентифика- 
ции взаимодействия добавляли стрептавидин-
пероксидазу (Invitrogen, США) в разведении в 
PBST согласно рекомендации производителя. 
После каждой стадии экспериментальные лунки  
отмывали не менее 6 раз PBST. Уровень взаимо- 
действия оценивали окрашиванием раствором 
орто-фенилендиамина (4 мМ) (Sigma, США) 
и перекиси водорода (0.04%) в цитрат-фосфат- 
ном буфере (0.02 M лимонная кислота, 0.05 M  
Na2HPO4). Ферментативную реакцию останавли- 
вали добавлением равного объема 10%-ной 
серной кислоты. Интенсивность окрашивания 
полученного окисленного субстрата определяли с 
помощью планшетного спектрофотометра iMark 
(США) при длине волны 490 нм. 

В варианте с иммобилизованным HlyIICTD 
после блокировки в экспериментальные лунки 
вносили раствор HlyII (рН 5.0), инкубировали 
1 ч при 37°С, далее добавляли растворы моно- 
клональных антител, взаимодействующих с HlyII,  
но не с HlyIICTD. После инкубации в тех же 
условиях, что и в предыдущей стадии, лунки ин- 
кубировали с кроличьими антителами против им- 
муноглобулинов мыши, конъюгированными с  
пероксидазой хрена (Invitrogen, США), в раз- 
ведении согласно инструкции производителя (1 ч 
при 37°С). Планшеты отмывали и окрашивали так 
же, как описано в предыдущем абзаце.

Иммуноблоттинг. Предварительно инкуби- 
ровали 0.2 мкг HlyIICTD-био с 1 мкг HlyII при  
рН 5.0 либо рН 7.2 в течение 30 мин при ком- 
натной температуре. Далее реакционные смеси 
подвергали электрофоретическому разделению 
в присутствии додецилсульфата натрия и β-мер- 
каптоэтанола в 14%-ном ПААГ согласно работе 
[32]. Перенос на нитроцеллюлозную мембрану 
и окрашивание белковых полос проводили, как  
описано в работе [13], при этом антитело LCTD-71  
добавляли в концентрации 10 мкг/мл, стрепта- 
видин-пероксидазу (Invitrogen, США) и кроличьи  
антитела против иммуноглобулинов мыши, конъю- 
гированные с пероксидазой хрена (Invitrogen, 
США), добавляли в разведении согласно инструк- 
ции производителя (1 ч при 37°С).

Взаимодействие HlyIICTD с эритроцитами. 
Реакцию проводили в 100 мкл 0.1%-ной суспензии 
эритроцитов в фосфатно-солевом буфере, содер- 
жащем 5% бычьего сывороточного альбумина 
(Sigma, США). К эритроцитам добавляли 3.57 мкМ  
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HlyIICTD-bio либо одновременно 3.57 мкМ  
HlyIICTD-bio и 0.625 мкМ HlyII. В случае до- 
бавления только HlyIICTD-bio эритроциты 
осаждали центрифугированием 1500 об/мин 
(центрифуга Thermo Scientific, MySPIN 12, КНР)  
и лизировали добавлением 100 мкл дистилирован- 
ной воды. Далее процедуры для обоих вариантов 
проводили одинаково, реакционные смеси центри- 
фугировали (17  000 об/мин, M141R RWD Life 
Science, КНР) не менее 3 раз. После каждого 
осаждения осадок ресуспендировали в фосфатно-
солевом буфере, содержащем 5% бычьего сыворо- 
точного альбумина. Далее к осадкам добавляли 
стрептавидин-пероксидазу в разведении согласно 
рекомендации производителя. После инкубации 
полученных фрагментов мембран со стрептавидин-
пероксидазой в течение 1 ч при 37°С проводили 
трехкратную отмывку экспериментальных точек 
так же, как и на предыдущей стадии. Далее к осадку 
добавляли 4 мM раствор орто-фенилендиамина 
в цитрат-фосфатном буфере (0.02 M лимонная 
кислота, 0.05 M Na2HPO4), содержащего 0.003% 
H2O2 (v/v). Реакцию останавливали добавлением 
равного объема 10%-ной серной кислоты. В 
качестве отрицательного контроля стрептавидин-
пероксидазой окрашивали фрагменты мембран, 
полученные после лизиса водой и HlyII без 
добавления HlyIICTD-био. Далее определяли 
оптическую плотность при 490 нм.

Статистическая обработка результатов. Все  
результаты представлены в виде средних значе- 
ний (Mean) и стандартных отклонений (SD), по- 
лученных в результате не менее пяти повторов 
в одном эксперименте. Данные обрабатывали в 
программном обеспечении Microsoft Excel 2016.

ЗАКЛЮЧЕНИЕ

Свойства клеточной мембраны обусловливают 
формирование вблизи нее слабокислых условий, 
которые способствуют изменению свойств бел- 
ков, взаимодействующих с мембраной. В данной 
работе были изучены изменения функциональных 
свойств С-концевого домена HlyII. Выявлена его  
способность образовывать устойчивые комп- 
лексы между собой независимо от того, входит ли 
он в состав полноразмерного токсина, большого 
С-концевого фрагмента или короткого HlyIICTD 
в условиях, соответствующих существующим 
вблизи клеточной мембраны (рН 5.0). Токсин 
в примембранной области находится в состоя- 

нии частично расплавленной глобулы, в котором  
С-концевые домены мономеров могут связы- 
ваться друг с другом, увеличивая локальную 
концентрацию полноразмерных токсинов. По- 
лученные результаты проясняют механизм поро- 
образования и разрушения клеток-мишеней клю- 
чевым патогенным фактором HlyII B. cereus.
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Hemolysin II (HlyII) is one of the key pathogenic factors of the opportunistic gram-positive bacterium 
Bacillus cereus. HlyII lyses target cells by forming pores on membranes. HlyII belongs to the group of 
β-pore-forming toxins. A distinctive feature of HlyII is the presence of a C-terminal domain of 94 amino 
acid residues (HlyIICTD). It was shown that under slightly acidic conditions (pH 5.0), corresponding to the 
near-membrane region, the C-terminal domains, both by themselves and as part of the toxin, form stable 
complexes consisting of full-length and truncated toxin molecules. HlyII, HlyIILCTD (large C-terminal 
fragment Met225–Ile412) and HlyIICTD were obtained using recombinant producer strains Escherichia coli 
BL21(DE3). Biotinylation of HlyIICTD was carried out using N-hydroxysuccinimide ester of biotin. The 
interaction of HlyIICTD with HlyIICTD, HlyIILCTD, and HlyII, as well as the interaction of HlyIICTD 
with erythrocyte membranes, were studied by enzyme-linked immunosorbent assay and immunoblotting 
using both horseradish peroxidase-conjugated streptavidin and monoclonal antibodies against HlyII. Under 
slightly acidic conditions, HlyIICTD interacted with both the HlyIICTD domain within the full-length toxin 
and with the HlyIICTD protein. The interaction of HlyIICTD with the erythrocyte membrane increased 
fold in the presence of the toxin. The property of the C-terminal domain to form complexes with each 
other was revealed, regardless of whether it is part of the full-length toxin, the large C-terminal fragment, 
or the short HlyIICTD under conditions corresponding to those existing near the cell membrane (pH 5.0). 
The toxin in the perimembrane region exists in a partially molten globule state, in which the C-terminal 
domains of the monomers can bind to each other, increasing the local concentration of full-length toxins.

Keywords: pore-forming toxin, C-terminal domain of hemolysin II of Bacillus cereus, protein conformation, 
plasma membrane, enzyme immunoassay


