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ВВЕДЕНИЕ

Опухоль представляет собой сложную систему, 
состоящую из взаимодействующих раковых клеток 
и клеток микроокружения опухоли (МО), которые 
играют ключевую роль в прогрессии опухоли, мета- 

стазировании и вносят значительный вклад в раз- 
витие устойчивости опухоли к традиционным ме- 
тодам лечения [1–3]. Микроокружение опухоли 
представлено разнообразными клетками – опу- 
холь-ассоциированными фибробластами (ОАФ), 
иммунными клетками, эндотелиальными и ме- 
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Злокачественные опухоли при развитии способны формировать пермиссивное микроокружение, 
влияющее на их дальнейший рост и развитие. Существенную роль в этом процессе играют 
опухоль-ассоциированные фибробласты. В настоящем исследовании мы использовали для создания 
подкожной мышиной опухоли инокуляцию совместной культуры раковых клеток и фибробластов 
для формирования опухолей, обогащенных клетками микроокружения. После формирования 
опухолевого узла проводили внутриопухолевое введение препарата, содержащего плазмиду с геном 
лиганда активирующих рецепторов иммунных контрольных точек OX40L под контролем промотора 
CMV. Для доставки в клетки плазмиду инкапсулировали в полимерную оболочку на основе ПЭГ-
ПЭИ-ТАТ. Мы оценивали влияние комплекса плазмиды, кодирующей OX40L, в поликатионной 
оболочке на рост опухолей. В предлагаемой модели мы искусственно обеспечивали присутствие 
фибробластов в опухоли, которые в определенной степени могут выполнять функцию развитого 
микроокружения. Опухоли, обогащенные фибробластами, как правило, обладали повышенной 
скоростью пролиферации. Однако при внутриопухолевом введении невирусного препарата, 
кодирующего OX40L, в такие опухоли мы наблюдали значительное увеличение количества животных 
с полностью регрессирующими опухолями, достигающего 25%. Предполагается, что введенные 
фибробласты могут выполнять антиген-презентирующую роль и/или служить дополнительным 
источником сигналов для активации иммунной системы.
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зенхимальными стволовыми клетками, а также 
неклеточным компонентом. Исследования взаимо- 
действий раковых клеток с МО для обеспечения 
иммуносупрессии, способствующей усилению 
опухолевого роста, привели к разработке совре- 
менной революционной иммуннотерапии рака, 
так называемой терапии иммунных контрольных 
точек, которая позволяет у ряда пациентов дости- 
гать полной или длительной ремиссии [4–6]. Эти 
достижения обосновывают новую парадигму те- 
рапии рака, ставящую во главу угла воздействие 
на опухоль и ее микроокружение, и определяют 
необходимость дальнейших исследований взаимо- 
действий раковых клеток с клетками МО [7].

Одни из основных клеток МО, встречающихся в 
строме многих солидных опухолей, – это опухоль- 
ассоциированные фибробласты (ОАФ), пред- 
ставляющие собой клетки с фибробластоподобным 
фенотипом. ОАФ участвуют во множестве про- 
цессов, включая ангиогенез, подвижность опухо- 
левых клеток, иммуногенные свойства опухоли, 
способствуют пролиферации и инвазии опухо- 
левых клеток, формируя внеклеточный матрикс, 
стимулируя фиброз и повышая жесткость опухо- 
левой ткани, что нарушает передачу сигналов 
пролиферации и дифференцировки [8–10].

Однако из-за их высокой гетерогенности и 
пластичности различия внутри популяций ОАФ 
значительны. Поэтому разница между ОАФ и 
нормальными фибробластами (НФ) в опухолевом 
микроокружении часто рассматривается как  
функциональная, а не основанная на конкрет- 
ных биомаркерах [11, 12]. Так, ОАФ демонстри- 
руют более высокие темпы роста и подвижность 
по сравнению с НФ, а также, создавая микро- 
окружение, они обладают большей способностью 
к стимулированию развития злокачественности 
клеток, опухолевого роста и метастазирования 
[13, 14]. 

Активные ОАФ продуцируют α-актин гладкой 
мускулатуры (α-SMA), различные протеазы и 
фибронектин, а также могут защищать опухолевые 
клетки от терапии, обеспечивая разные уровни 
устойчивости к лечению [15]. Фибробласты могут  
экспрессировать молекулы главного комплекса 
гистосовместимости класса II и совместно стиму- 
лирующие молекулы, такие как CD80 и CD86, 
что необходимо для эффективной активации 
Т-клеток [16]. Это позволяет им активно участ- 
вовать в иммунных реакциях, представляя про- 

цессированные антигены Т-клеткам. Функция 
презентации антигенов фибробластами особенно 
выражена в условиях опухолей, где была выде- 
лена подгруппа фибробластов, известная как 
антигенпрезентирующие раковые фибробласты 
(aпОАФ), которые играют важную роль в моду- 
ляции ответов Т-клеток в микроокружении опухо- 
ли [17, 18]. Несмотря на преобладание функций, 
связанных со стимуляцией прогрессии опухоли, 
ряд исследований указывает на то, что некоторые 
субпопуляции ОАФ обладают эффектом подавле- 
ния роста опухолей [19–21]. 

ОАФ представляют собой перспективные ми- 
шени для разработки новых подходов к противо- 
опухолевой терапии, поскольку они обнаружи- 
ваются практически во всех типах опухолей [13, 22]. 

Для изучения взаимодействия ОАФ и раковых 
клеток в различных типах опухолей применяют 
мышиные модели, в которых раковые клетки 
вводят вместе с фибробластами [23]. Модели, 
использующие опухолевый материал человека 
для прививки иммунодефицитным мышам, стали  
центральной частью исследований в области биоло- 
гии опухолей и традиционной терапии рака [24]. 
Например, подкожная совместная инъекция кле- 
ток рака молочной железы человека (например,  
MDA-MB-231 или MCF7) с нормальными фибро- 
бластами кожи (НФК) в иммунокомпрометиро- 
ванных мышах демонстрирует, что НФК способ- 
ствуют росту опухоли, усиливают ангиогенез и уве- 
личивают отложение коллагена [25]. Метод сов- 
местной инокуляции обычно включает смешивание 
раковых клеток с фибробластами и введение их 
мышам путем подкожной или внутрикожной 
инъекции. Наличие фибробластов значительно 
влияет на рост и прогрессию опухоли, поскольку 
фибробласты создают опухоль-пермиссивное МО, 
усиливая рост опухоли, в то время как опухоли, 
которые не привлекают фибробласты, развиваются 
медленнее. Сингенные модели, использующие 
инокуляцию клеточных линий рака в генетически 
идентичных мышах, способствуют изучению им- 
мунных ответов и взаимодействий в МО [26].

Также такие модели важны для тестирования 
лекарств, особенно для терапий, нацеленных на  
опухолевую строму. Исследования таких ОАФ-
ассоциированных белковых молекул, как ингиби- 
торы активационного белка фибробластов (FAP)  
и TGF-β, способствуют механистическим исследо- 
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ваниям для понимания взаимодействий между 
фибробластами и раковыми клетками [27]. 

Целью работы было определить, как присутствие 
фибробластов влияет на лечение опухоли неви- 
русным препаратом OX40L, продуцирующим ли- 
ганд активирующих рецепторов иммунных конт- 
рольных точек.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Одно из отличий опухолей, которые развиваются 
в организме от искусственно инокулированных 
раковых клеток, – это хорошо развитое микро- 
окружение, в основном представленное фибро- 
бластами. В данной работе мы использовали мы- 
шиную модель с увеличенным количеством фибро- 
бластов в инокулированной опухоли, для чего про- 
водили совместную инокуляцию раковых клеток 
и фибробластов, полученных из кожи мыши.

Выбор условий совместного культивирования 
in vivo раковых клеток и фибробластов. В дан- 
ном исследовании использовали нормальные 
фибробласты (НФК), выделенные из кожи мыши 
линии BALB/c в возрасте 4–5 недель. После первого 
пересева клеточные культуры представляли со- 
бой морфологически однородную популяцию 
фибробластов. Раковые клетки CT26gfp, мечен- 
ные зеленым флуоресцентным белком (EGFP), 
были использованы для визуализации опухолевых 
клеток в экспериментальных группах мышей. 

Для определения уровня стромальных клеток 
в опухолях использовали антитела к одному 
из маркеров фибробластов Pdgfrβ – CD140b 
(PDGFRB) – моноклональное антитело, клон 
APB5, конъюгированное с флуорофором PE 
(eBioscience). Pdgfrβ – маркер нескольких ти- 
пов клеток, составляющих микроокружение опу- 
холи (стромы), которые играют важную роль в 
поддержании опухолевого роста, ангиогенеза и 
фиброза, в том числе фибробластов и опухоль-
ассоциированных фибробластов [11, 28]. По 
наличию этого белка можно судить о содержании 
стромальных клеток в опухоли. Для создания 
опухоли, обогащенной по стромальному ком- 
поненту, нормальные фибробласты кожи мыши 
смешивали с раковыми клетками CT26gfp в 
соотношениях 1 : 1 или 3 : 1, после чего клетки 
прививали подкожно мышам линии BALB/c. Для 
проведения эксперимента были сформированы 

три группы мышей: 1) животным инокулировали 
только клетки CT26gfp; 2) мышам инокулировали 
клетки CT26gfp в сочетании с нормальными фибро- 
бластами (НФК) в соотношении 1 : 1; 3) мышам 
инокулировали клетки CT26gfp с НФК в соотно- 
шении 1 : 3.

По достижении размера 60–100 мм3 опухоли 
собирали и диссоциировали с помощью фермента 
коллагеназы D в течение 1–2 ч при 37°C. Клетки 
окрашивали антителами к Pdgfrβ-PE, полученную 
клеточную суспензию анализировали методом 
проточной цитофлуориметрии. В канале FITC 
наблюдали окрашенные зеленым флуоресцент- 
ным белком (EGFP) раковые клетки CT26gfp, в то 
время как клетки МО (преимущественно фибро- 
бласты) детектировали в канале PE. Фенотип кле- 
ток FITC/EGFP–PE+ соответствовал клеткам опу- 
холевой стромы.

Анализ показал, что в первой группе мышей, 
которым прививали только клетки CT26gfp, и в 
группе, где прививали клетки СТ26gfp/НФК в 
соотношении 1 : 1, отличия были минимальны, т.е. 
в первых двух группах содержание Pdgfrβ+-кле- 
ток практически не отличалось и было незначитель- 
ным, что указывает на отсутствие заметного 
влияния нормальных фибробластов на развитие 
стромы в этих условиях. При инокуляции клеток 
СТ26gfp/НФК в соотношении 1 : 3 в опухолях 
наблюдали увеличение доли клеток Pdgfrβ+EGFP– 
на ~50% по отношению к первым двум группам.

Таким образом, только в группе мышей при  
инокуляции клеток с соотношением раковые клет- 
ки/фибробласты 1 : 3 наблюдалось значительное 
увеличение количества клеток Pdgfrβ+EGFP– в  
образовавшихся опухолях. Полученные резуль- 
таты указывают на то, что совместная инокуляция 
мышам раковых клеток и нормальных фибро- 
бластов кожи приводит к увеличению доли стро- 
мальных клеток при дальнейшем росте опухоли. 
Увеличение доли клеток Pdgfrβ+EGFP– в опухоли 
при совместном введении раковых клеток и 
нормальных фибробластов в соотношении 1 : 3 
подтверждает предположение о том, что добавле- 
ние фибробластов может способствовать созда- 
нию мышиной опухолевой модели, обогащенной 
стромальным компонентом. При развитии опухоли 
с использованием такой модели фибробласты мо- 
гут приобретать свойства опухоль-ассоцииро- 
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ванных фибробластов (ОАФ), прилежащих к 
раковым клеткам [29–31], либо обеспечивать 
усиленный сигналинг в МО. Это позволяет ис- 
следовать действие терапевтических препаратов 
в опухолях с увеличенным содержанием стромы.

Иммунотерапия OX40L в модели опухоли с 
обогащенной стромой. Влияние фибробластов 
на терапию OX40L. Оценку влияния фибробластов 
кожи мыши, совместно культивируемых in vivo с 
раковыми клетками CT26gfp, на терапию опухоли 
проводили с использованием конструкции CMV-
OX40L-pGL3 в комплексе с блок-сополимером 
ПЭГ-ПЭИ-ТАТ (OX40L/ППT).

Эксперимент проводили следующим образом: 
мышам подкожно прививали раковые клетки 
линии CT26gfp (карцинома толстой кишки мы- 
ши) или совместную культуру раковых клеток 
CT26gfp и нормальных фибробластов кожи мыши 
в соотношении 1 : 3. Во всех случаях количество 
инокулированных клеток CT26gfp составляло 105. 

По достижении опухолью размера ~20–60 мм3  
животным вводили внутриопухолево конструк- 
цию CMV-OX40L-pGL3 в комплексе с ПЭГ-ПЭИ- 
ТАТ трижды по следующей схеме: первое вве- 
дение (день 0), второе введение через 48 ч и 
третье введение через 96 ч. В качестве контроля 
использовали введение в опухоль фосфатного 
буфера (PBS). Сравнивали следующие группы 
животных: мыши с привитой совместной куль- 
турой CT26gfp/НФК (соотношение 1 : 3), кото- 
рым вводили OX40L/ППT (А) или PBS (конт- 
роль) (В); мыши с привитой монокультурой 
CT26gfp, которым вводили OX40L/ППT (Б) или 
PBS (контроль) (Г). На рис. 1 представлены 
индивидуальные графики скорости роста опухо- 
ли каждой мыши в различных группах.

Результаты экспериментов показали, что до- 
бавление НФК при инокуляции опухоли вызы- 
вает ее бурную пролиферацию. В наших экспери- 
ментах выявлено, что скорость роста совместной 
культуры CT26gfp/НФК in vivo в ~1.5 раз выше, 
чем скорость роста опухоли, состоящей только 
из CT26gfp. Такой быстрый рост опухоли в 
некоторых случаях приводит к слишком раннему 
выходу животного из эксперимента, что не поз- 
воляет достоверно оценить торможение роста 
опухоли (ТРО) в таких моделях – можно только 
констатировать дихотомический ответ опухолей 
CT26gfp/НФК на терапию OX40L/ППТ – часть 

опухолей отвечали на терапию, в то время как 
другие из-за высокой неконтролируемой скорости 
роста никак на нее не реагировали. В обычных 
мономоделях CT26gfp скорость роста опухоли 
ниже, что позволяет осуществлять адекватный 
контроль развития опухоли при введении OX40L/
ППТ с достижением ТРО не менее 51%.

Тем не менее в моделях опухолей CT26gfp/НФК 
указанное выше дихотомическое действие OX40L/
ППТ приводило к тому, что часть опухолей отвечала 
на терапию, причем ответ был более выраженный, 
чем в случае групп моно-CT26gfp. В итоге в группе 
мышей, которым вводили опухолевые клетки сов- 
местно с фибробластами, при введении OX40L/ 
ППT достигается наибольшее количество полных  
ответов (животные, у которых полностью отсут- 
ствуют признаки наличия опухолевого образова- 
ния в месте введения опухоли) – три против одного 
полного ответа в моногруппе.

Повторная инокуляция опухоли мышам с  
полным ответом. У трех мышей из группы, ко- 
торым прививали совместные культуры клеток 
СТ26gfp/НФК и проводили лечение препаратом 
OX40L, наблюдали полную регрессию опухолей. 
Для этих трех мышей провели повторную ино- 
куляцию клеток СТ26gfp, чтобы провести оценку 
стойкости возникшего иммунного ответа (tumor 
re-challenge).

С этой целью им по истечении 60 сут после 
регрессии опухоли были привиты подкожно клет- 
ки СT26gfp (105 кл./мышь). При этом инокуляцию 
осуществляли на бок, противоположный тому, 
куда прививали клетки в начале эксперимента. Это 
было сделано во избежание ошибки эксперимента, 
связанного со вторичным развитием опухоли из  
дормантных раковых клеток, потенциально остав- 
шихся после первого введения и полной регрессии. 
Одновременно те же клетки СT26gfp и в том же 
количестве были привиты трем мышам, которые 
раньше не участвовали в экспериментах (т.е. 
опухоль прививали впервые – контрольная группа). 
Через неделю наблюдали развитие опухоли у конт- 
рольных мышей. У ранее выздоровевших мышей 
развития опухоли не наблюдали на протяжении 
всего эксперимента и 60 дней после него. Таким 
образом, мы обнаружили образование стойкого 
иммунного ответа к раковой линии СT26gfp у 
мышей, ранее излеченных от опухолей. 
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ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Культивирование клеток. Клетки карциномы 
толстой кишки CT26gfp, меченные зеленым флуо- 
ресцентным белком (EGFP), любезно предос- 
тавленные Е.О. Серебровской [32], культивиро- 
вали в среде RPMI-1640 (Gibco, Thermo Fisher 
Scientific, США) в присутствии 12.5%-ной эмбрио- 
нальной бычьей сыворотки, 100 ед./мл пеницил- 
лина, 100 мкг/мл стрептомицина и 0.25 мг/мл 
амфотерицина (Gibco, Thermo Fisher Scientific, 
США). Клетки выращивали при 5% СО2, 37°С и 
влажности 90% в клеточном инкубаторе. Клетки 
пересевали каждые 3–4 сут, в работе использовали 
клетки 3–4-го пассажей. Для подсчета количества 
клеток их открепляли с помощью трипсин-ЭДТА  
(Gibco, Thermo Fisher Scientific, США), окраши- 

вали трипановым синим (Bio-Rad, США) и под- 
считывали с помощью счетчика клеток Countess II  
FL Automated Cell Counter (Invitrogen, США).

Конструкция. Плазмида CMV-OX40L-pGL3, 
кодирующая ген мыши OX40L под промотором 
CMV, ранее была получена в нашей лаборатории 
[33]. 

Полиплекс ППT. Катионный сополимер ППT 
был получен при использовании полиэтилени- 
мина (ПЭИ) (кат. № 23966, Polysciences, Warring- 
ton, PA, США), полиэтиленгликоля (ПЭГ) (кат. 
№ 10314, Quanta BioDesign, Powell, OH, США) и 
TAT-пептида (GRKKKRRQRC, синтезированного 
RusBiolink, Москва, Россия), как описано ранее 
[34]. Для экспериментов in vivo использовали 
соотношение N/P = 30, которое было определено 

Рис. 1. Индивидуальные графики роста опухоли. (а, в) – Влияние внутриопухолевого введения мышам с привитой 
совместной культурой CT26gfp/НФК; (а) – результаты введения конструкции OX40L/ППТ, (в) – контрольная группа, 
введение PBS; (б, г) – влияние внутриопухолевого введения мышам с привитой карциномой CT26gfp; (б) – результаты 
введения конструкции OX40L/ППТ, (г) – контрольная группа, введение PBS. В нижнем правом углу каждого графика 
приведено количество животных с полным ответом относительно общего количества животных в группе эксперимента. 
По оси ординат указаны размеры опухоли в мм3, по оси абсцисс – сутки от момента инокуляции опухоли. 

(а) (б)

(в) (г)
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как оптимальное. Комплекс ДНК/ППТ готовили, 
как описано ранее [35], результирующий раствор 
содержал 12.5 мкМ ППТ, 80 нг/мл плазмидной 
ДНК.

Мыши. Мыши – самки линии BALB/с (4–5 
и 6–8 недель) – были получены из питомника 
“Пущино” ФГБУН ФИБХ РАН и содержались в  
виварии ИБХ РАН (Москва, Россия). Корм и 
чистую воду животные получали без ограничения. 

Получение мышиных фибробластов (НФК). 
В исследовании использовали нормальные фиб- 
робласты (НФК), выделенные из кожи мыши 
линии BALB/c. Для этого мышей возраста 4–5 не- 
дель эвтаназировали методом цервикальной дис- 
локации, после чего собирали фрагменты кожи с 
боков мыши. Далее фрагменты кожи разрезали на 
мелкие кусочки ножницами (2–3 мм3), после чего 
диссоциировали с помощью фермента коллаге- 
назы D (Collagenase D from Clostridium histolyticum, 
Sigma-Aldrich, США) при концентрации 1 мг/мл в 
среде DMEM/F12 с 1%-ной фетальной телячьей 
сывороткой, в течение 1–2 ч при 37°C. Получен- 
ную клеточную суспензию ресуспендировали и 
культивировали в среде DMEM/F12, обогащенной 
10%-ной фетальной телячьей сывороткой и анти- 
биотиками (пенициллин и стрептомицин), до 
достижения 90%-ной конфлюентности, после чего 
клетки открепляли трипсином-ЭДТА для пересева. 
После первого пересева клеточные культуры пред- 
ставляли собой морфологически однородную 
популяцию фибробластов. Для дальнейших экспе- 
риментов получали и замораживали фибробласты 
кожи, культивированные в течение 2–3 пассажей.

Эксперименты in vivo. Для образования опу- 
холей готовили суспензии клеток в фосфатно-
солевом буфере (PBS), содержащие 106 клеток 

CT26gfp в 1 мл для получения моноопухолей 
CT26gfp или содержащие 106 клеток CT26gfp и  
3 × 106 клеток фибробластов в 1 мл для получе- 
ния опухолей, обогащенных фибробластами. Про- 
водили подкожную инокуляцию на правую сто- 
рону (боковой) части тела мыши. Для инокуляции 
опухолей использовали самок возраста 6–8 недель, 
до 12 голов на одну экспериментальную группу. 
Суммарный объем вводимой суспензии клеток –  
100 мкл (105 клеток). Эффект воздействия препа- 
ратом OX-40L/ППT оценивали по торможению 
скорости роста опухоли (ТРО) и полному ответу на  

терапию. Объем опухоли определяли по следую- 
щей формуле:

Объем опухоли = длина × ширина × высота × 0.52.
Сополимер ПЭГ-ПЭИ-TAT (ППТ) использовали 

для получения комплекса с плазмидной ДНК. 
Комплекс пДНК/ППT, содержащий плазмиду 
CMV-OX40L-pGL3, вводили в опухоль в дозе 
0.08 мкг ДНК/мм3. Внутриопухолевое введе- 
ние начинали при достижении размеров опухо- 
ли 20–60 мм3 (день 0), мышам проводили внутри- 
опухолевые инъекции комплекса OX40L/ППТ или 
PBS, объем введения составлял половину объема 
опухоли. Далее внутриопухолевое введение пре- 
парата повторяли еще дважды, во 2-й и 6-й дни 
после начала введения препарата. 

Мышей выводили из эксперимента после 
достижения размера опухоли 2000 мм3 или при 
наличии одного из критериев, установленных в  
одобренном протоколе IACUC, гуманных крите- 
риев вывода животных из эксперимента (конт- 
рольные точки). 

ЗАКЛЮЧЕНИЕ

В некоторых типах опухолей с развитым 
микроокружением опухоль-ассоциированные 
фибробласты выступают его основным компо- 
нентом и во многом отвечают за низкую эффек- 
тивность терапии таких опухолей. С помощью 
генной терапии можно преобразовать ОАФ в 
локальный источник терапевтических молекул 
прямо внутри опухоли. Совместная инъекция 
фибробластов и раковых клеток в мышиных 
моделях – мощный подход для исследования МО 
и разработки новых терапевтических стратегий, 
нацеленных на стромальные компоненты. Эти  
модели важны для прояснения сложных взаимо- 
действий между ОАФ и раковыми клетками для 
углубления нашего понимания биологии опухолей 
и формирования новых терапевтических страте- 
гий. Нормальные фибробласты, находящиеся в 
непосредственной близости к ОАФ, становятся 
измененными и, по-видимому, выступают источ- 
ником различных сигналов, которые в сочетании 
с активностью OX40L способствуют достижению 
полного терапевтического ответа. Ранее было по- 
казано, что опухоли, состоящие из раковых кле- 
ток и фибробластов, развиваются стабильно с сох- 
ранением интродуцированных в опухоль фибро- 
бластов [36]. При локальном введении может 
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происходить трансдукция всех клеток опухоли, в 
том числе фибробластов.

В данной работе мы продемонстрировали 
значение НФК при применении генотерапев- 
тических препаратов, в частности OX40L/ППТ. 
Полный ответ на терапию в случае использования 
CT26gfp/НФК был сильнее выражен. Было про- 
демонстрировано, что комплекс OX40L/ППТ 
значительно влияет на возможность полной рег- 
рессии опухоли в группе CT26gfp/НФК, способ- 
ствуя выживаемости 25%, тогда как для моноопу- 
холи доля таких животных составляет 9–10%.  
Возможно, данный эффект связан с экспрессией 
OX40L самими фибробластами или с индукцией 
иммунного ответа в связи с массовой гибелью 
нормальных фибробластов в опухоли. Это пред- 
положение требует дальнейшего тщательного ис- 
следования. По результатам повторной инокуля- 
ции клеток СТ26gfp (tumor re-challenge) можно 
говорить также об образовании у вылеченных 
животных стойкого иммунного ответа.

Таким образом, наша работа подтверждает 
данные о том, что фибробласты способствуют 
значительному ускорению роста опухоли, в том 
числе если это искусственно интродуцированные 
фибробласты. Предположительно это достигается 
за счет создания пермиссивного микроокружения 
и/или благодаря продуцированию факторов, 
способствующих развитию МО. Так, опухоли 
CT26gfp/НФК прогрессировали значительно 
быстрее опухолей с моно-CT26gfp. Часть опухолей 
с повышенным стромальным компонентом де- 
монстрировала неконтролируемый опухолевый 
рост, при этом часть таких опухолей реагировала 
на терапию, причем в данной группе наблюдалась 
наибольшая доля полного ответа на лечение 
по сравнению с моноопухолями (25% против 
9–10%). Мы полагаем, что гибель НФК может до- 
полнительно активировать иммунную систему, 
выступая в роли молекулярных паттернов, ас- 
социированных с повреждениями (DAMP), либо  
в качестве антигенпрезентирующих aпОАФ,  
играя роль в модуляции ответов Т-клеток. При 
этом обязательное условие – наличие фактора 
OX40L, активирующего лиганда Т-клеток; опу- 
холи CT26gfp/НФК контрольной группы быстро 
пролиферировали, приводя к гибели животных. 
Необходимы дальнейшие исследования, направ- 
ленные на изучение наблюдаемых эффектов в мо- 
делях с обогащенным стромальным компонентом 

для распознавания механизмов влияния фибро- 
бластов на увеличение полного ответа на терапию 
для возможности использования полученных 
знаний в противоопухолевой терапии.
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Malignant tumors, during their progression, are capable of forming a permissive microenvironment that 
influences their further growth and development. Tumor-associated fibroblasts (TAFs) play a significant 
role in this process. In the present study, we generated subcutaneous murine tumors by inoculating a co-
culture of cancer cells and fibroblasts to create tumors enriched with microenvironmental cells. Once the 
tumor nodule had formed, an intratumoral injection was performed using a formulation containing a plasmid 
encoding the ligand for immune checkpoint receptors –OX40L – under the control of a CMV promoter. 
For efficient cellular delivery, the plasmid was encapsulated in a polymer shell based on PEG-PEI-TAT. 
We evaluated the impact of this treatment on tumor growth. In this experimental model, fibroblasts were 
artificially introduced into the tumor to partially simulate a developed tumor microenvironment. These 
tumors demonstrated an increased proliferation rate. However, intratumoral administration of the non-viral 
OX40L-encoding agent into fibroblast-enriched tumors resulted in a notable increase in the rate of complete 
tumor regression, reaching up to 25%. It is hypothesized that introduced fibroblasts may perform antigen-
presenting functions and/or serve as an additional source of signals that activate the immune system.
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